Suppr超能文献

临床信息学方法促进癌症数据共享。

Clinical Informatics Approaches to Facilitate Cancer Data Sharing.

机构信息

Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA.

Center for Outcomes Research and Evaluation at Yale, New Haven, CT, USA.

出版信息

Yearb Med Inform. 2023 Aug;32(1):104-110. doi: 10.1055/s-0043-1768721. Epub 2023 Jul 6.

Abstract

OBJECTIVES

Despite growing enthusiasm surrounding the utility of clinical informatics to improve cancer outcomes, data availability remains a persistent bottleneck to progress. Difficulty combining data with protected health information often limits our ability to aggregate larger more representative datasets for analysis. With the rise of machine learning techniques that require increasing amounts of clinical data, these barriers have magnified. Here, we review recent efforts within clinical informatics to address issues related to safely sharing cancer data.

METHODS

We carried out a narrative review of clinical informatics studies related to sharing protected health data within cancer studies published from 2018-2022, with a focus on domains such as decentralized analytics, homomorphic encryption, and common data models.

RESULTS

Clinical informatics studies that investigated cancer data sharing were identified. A particular focus of the search yielded studies on decentralized analytics, homomorphic encryption, and common data models. Decentralized analytics has been prototyped across genomic, imaging, and clinical data with the most advances in diagnostic image analysis. Homomorphic encryption was most often employed on genomic data and less on imaging and clinical data. Common data models primarily involve clinical data from the electronic health record. Although all methods have robust research, there are limited studies showing wide scale implementation.

CONCLUSIONS

Decentralized analytics, homomorphic encryption, and common data models represent promising solutions to improve cancer data sharing. Promising results thus far have been limited to smaller settings. Future studies should be focused on evaluating the scalability and efficacy of these methods across clinical settings of varying resources and expertise.

摘要

目的

尽管临床信息学在改善癌症结果方面的应用越来越受到关注,但数据可用性仍然是进展的持续瓶颈。将数据与受保护的健康信息相结合的困难常常限制了我们为分析而聚合更大、更具代表性的数据集的能力。随着需要越来越多临床数据的机器学习技术的兴起,这些障碍加剧了。在这里,我们回顾了临床信息学中最近为解决与安全共享癌症数据相关的问题所做的努力。

方法

我们对 2018-2022 年期间发表的与癌症研究中共享受保护健康数据相关的临床信息学研究进行了叙述性综述,重点关注分散式分析、同态加密和通用数据模型等领域。

结果

确定了调查癌症数据共享的临床信息学研究。搜索的一个特别重点是关于分散式分析、同态加密和通用数据模型的研究。分散式分析已经在基因组、成像和临床数据中得到了原型开发,在诊断图像分析方面取得了最大的进展。同态加密最常用于基因组数据,而在成像和临床数据中使用较少。通用数据模型主要涉及电子健康记录中的临床数据。尽管所有方法都有强大的研究,但很少有研究表明广泛的实施。

结论

分散式分析、同态加密和通用数据模型是改善癌症数据共享的有前途的解决方案。迄今为止,有希望的结果仅限于较小的环境。未来的研究应集中于评估这些方法在资源和专业知识各不相同的临床环境中的可扩展性和效果。

相似文献

1
Clinical Informatics Approaches to Facilitate Cancer Data Sharing.
Yearb Med Inform. 2023 Aug;32(1):104-110. doi: 10.1055/s-0043-1768721. Epub 2023 Jul 6.
4
Protecting Privacy and Security of Genomic Data in i2b2 with Homomorphic Encryption and Differential Privacy.
IEEE/ACM Trans Comput Biol Bioinform. 2018 Sep-Oct;15(5):1413-1426. doi: 10.1109/TCBB.2018.2854782. Epub 2018 Jul 10.
8
Clinical Research Informatics.
Yearb Med Inform. 2020 Aug;29(1):203-207. doi: 10.1055/s-0040-1702007. Epub 2020 Aug 21.
9
Proof-of-concept study: Homomorphically encrypted data can support real-time learning in personalized cancer medicine.
BMC Med Inform Decis Mak. 2019 Dec 4;19(1):255. doi: 10.1186/s12911-019-0983-9.
10
Collaborative privacy-preserving analysis of oncological data using multiparty homomorphic encryption.
Proc Natl Acad Sci U S A. 2023 Aug 15;120(33):e2304415120. doi: 10.1073/pnas.2304415120. Epub 2023 Aug 7.

引用本文的文献

2
Informatics for One Health.
Yearb Med Inform. 2023 Aug;32(1):2-6. doi: 10.1055/s-0043-1768757. Epub 2023 Dec 26.
3
Cancer Informatics 2023: Data Sharing and Federating Learning Point Towards New Collaborative Opportunities.
Yearb Med Inform. 2023 Aug;32(1):111-114. doi: 10.1055/s-0043-1768744. Epub 2023 Dec 26.

本文引用的文献

1
Federated learning enables big data for rare cancer boundary detection.
Nat Commun. 2022 Dec 5;13(1):7346. doi: 10.1038/s41467-022-33407-5.
2
Larynx cancer survival model developed through open-source federated learning.
Radiother Oncol. 2022 Nov;176:179-186. doi: 10.1016/j.radonc.2022.09.023. Epub 2022 Oct 5.
3
Federated Learning-Based Detection of Invasive Carcinoma of No Special Type with Histopathological Images.
Diagnostics (Basel). 2022 Jul 9;12(7):1669. doi: 10.3390/diagnostics12071669.
5
Shifting machine learning for healthcare from development to deployment and from models to data.
Nat Biomed Eng. 2022 Dec;6(12):1330-1345. doi: 10.1038/s41551-022-00898-y. Epub 2022 Jul 4.
6
Perspectives of Patients About Artificial Intelligence in Health Care.
JAMA Netw Open. 2022 May 2;5(5):e2210309. doi: 10.1001/jamanetworkopen.2022.10309.
8
NIH issues a seismic mandate: share data publicly.
Nature. 2022 Feb;602(7898):558-559. doi: 10.1038/d41586-022-00402-1.
9
Federated learning and differential privacy for medical image analysis.
Sci Rep. 2022 Feb 4;12(1):1953. doi: 10.1038/s41598-022-05539-7.
10
Privacy-preserving breast cancer recurrence prediction based on homomorphic encryption and secure two party computation.
PLoS One. 2021 Dec 20;16(12):e0260681. doi: 10.1371/journal.pone.0260681. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验