Suppr超能文献

基于成像的心脏骤停后结局预测的可解释机器学习模型。

Interpretable machine learning model for imaging-based outcome prediction after cardiac arrest.

机构信息

Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.

Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.

出版信息

Resuscitation. 2023 Oct;191:109894. doi: 10.1016/j.resuscitation.2023.109894. Epub 2023 Jul 4.

Abstract

INTRODUCTION

Early identification of brain injury patterns in computerized tomography (CT) imaging is crucial for post-cardiac arrest prognostication. Lack of interpretability of machine learning prediction reduces trustworthiness by clinicians and prevents translation to clinical practice. We aimed to identify CT imaging patterns associated with prognosis with interpretable machine learning.

METHODS

In this IRB-approved retrospective study, we included consecutive comatose adult patients hospitalized at a single academic medical center after resuscitation from in- and out-of-hospital cardiac arrest between August 2011 and August 2019 who underwent unenhanced CT imaging of the brain within 24 hours of their arrest. We decomposed the CT images into subspaces to identify interpretable and informative patterns of injury, and developed machine learning models to predict patient outcomes (i.e., survival and awakening status) using the identified imaging patterns. Practicing physicians visually examined the imaging patterns to assess clinical relevance. We evaluated machine learning models using 80%-20% random data split and reported AUC values to measure the model performance.

RESULTS

We included 1284 subjects of whom 35% awakened from coma and 34% survived hospital discharge. Our expert physicians were able to visualize decomposed image patterns and identify those believed to be clinically relevant on multiple brain locations. For machine learning models, the AUC was 0.710 ± 0.012 for predicting survival and 0.702 ± 0.053 for predicting awakening, respectively.

DISCUSSION

We developed an interpretable method to identify patterns of early post-cardiac arrest brain injury on CT imaging and showed these imaging patterns are predictive of patient outcomes (i.e., survival and awakening status).

摘要

简介

在计算机断层扫描(CT)成像中早期识别脑损伤模式对于心脏骤停后预后评估至关重要。由于机器学习预测缺乏可解释性,降低了临床医生的可信度,并阻碍了其向临床实践的转化。我们旨在通过可解释的机器学习来识别与预后相关的 CT 成像模式。

方法

这是一项经过机构审查委员会批准的回顾性研究,我们纳入了 2011 年 8 月至 2019 年 8 月期间在单一学术医疗中心因院内外心脏骤停复苏后昏迷的连续成年患者,这些患者在心脏骤停后 24 小时内接受了脑部非增强 CT 扫描。我们将 CT 图像分解为子空间,以识别可解释和信息丰富的损伤模式,并使用所识别的成像模式开发机器学习模型来预测患者结局(即存活和觉醒状态)。执业医师通过视觉检查评估图像模式以评估临床相关性。我们使用 80%-20%的随机数据分割来评估机器学习模型,并报告 AUC 值以衡量模型性能。

结果

我们纳入了 1284 名患者,其中 35%从昏迷中苏醒,34%存活至出院。我们的专家医生能够可视化分解后的图像模式,并识别出他们认为在多个脑区具有临床相关性的模式。对于机器学习模型,预测存活率的 AUC 为 0.710±0.012,预测觉醒状态的 AUC 为 0.702±0.053。

讨论

我们开发了一种可解释的方法来识别心脏骤停后早期 CT 成像上的脑损伤模式,并表明这些成像模式可预测患者结局(即存活和觉醒状态)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验