Welsh Blair A, Corrigan Maggie E, Assaf Emmanuel, Nauta Klaas, Sebastianelli Paolo, Jordan Meredith J T, Fittschen Christa, Kable Scott H
School of Chemistry, University of New South Wales, Kensington, New South Wales, Australia.
Combustion Research Facility, Sandia National Laboratories, Livermore, CA, USA.
Nat Chem. 2023 Oct;15(10):1350-1357. doi: 10.1038/s41557-023-01272-4. Epub 2023 Jul 6.
Formaldehyde, HCHO, is the highest-volume carbonyl in the atmosphere. It absorbs sunlight at wavelengths shorter than 330 nm and photolyses to form H and HCO radicals, which then react with O to form HO. Here we show HCHO has an additional HO formation pathway. At photolysis energies below the energetic threshold for radical formation we directly detect HO at low pressures by cavity ring-down spectroscopy and indirectly detect HO at 1 bar by Fourier-transform infrared spectroscopy end-product analysis. Supported by electronic structure theory and master equation simulations, we attribute this HO to photophysical oxidation (PPO): photoexcited HCHO relaxes non-radiatively to the ground electronic state where the far-from-equilibrium, vibrationally activated HCHO molecules react with thermal O. PPO is likely to be a general mechanism in tropospheric chemistry and, unlike photolysis, PPO will increase with increasing O pressure.
甲醛(HCHO)是大气中含量最高的羰基化合物。它在波长小于330纳米的光线下吸收太阳光并发生光解,形成氢(H)和甲酰基(HCO)自由基,然后这些自由基与氧(O)反应生成羟基(HO)。在此我们表明,甲醛还有另一种生成羟基的途径。在低于自由基形成能量阈值的光解能量下,我们通过光腔衰荡光谱法在低压下直接检测到了羟基,并通过傅里叶变换红外光谱法的终产物分析在1巴压力下间接检测到了羟基。在电子结构理论和主方程模拟的支持下,我们将这种羟基的形成归因于光物理氧化(PPO):光激发的甲醛通过非辐射方式弛豫到基态,处于远非平衡态、振动激发态的甲醛分子与热态的氧发生反应。光物理氧化很可能是对流层化学中的一种普遍机制,并且与光解不同,光物理氧化会随着氧压力的增加而增强。