Suppr超能文献

大气光化学理论与实验进展展望。

Perspective on Theoretical and Experimental Advances in Atmospheric Photochemistry.

作者信息

Curchod Basile F E, Orr-Ewing Andrew J

机构信息

School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.

出版信息

J Phys Chem A. 2024 Aug 15;128(32):6613-6635. doi: 10.1021/acs.jpca.4c03481. Epub 2024 Jul 17.

Abstract

Research that explores the chemistry of Earth's atmosphere is central to the current understanding of global challenges such as climate change, stratospheric ozone depletion, and poor air quality in urban areas. This research is a synergistic combination of three established domains: earth observation, for example, using satellites, and field measurements; computer modeling of the atmosphere and its chemistry; and laboratory measurements of the properties and reactivity of gas-phase molecules and aerosol particles. The complexity of the interconnected chemical and photochemical reactions which determine the composition of the atmosphere challenges the capacity of laboratory studies to provide the spectroscopic, photochemical, and kinetic data required for computer models. Here, we consider whether predictions from computational chemistry using modern electronic structure theory and nonadiabatic dynamics simulations are becoming sufficiently accurate to supplement quantitative laboratory data for wavelength-dependent absorption cross-sections, photochemical quantum yields, and reaction rate coefficients. Drawing on presentations and discussions from the CECAM workshop on held in March 2024, we describe key concepts in the theory of photochemistry, survey the state-of-the-art in computational photochemistry methods, and compare their capabilities with modern experimental laboratory techniques. From such considerations, we offer a perspective on the scope of computational (photo)chemistry methods based on rigorous electronic structure theory to become a fourth core domain of research in atmospheric chemistry.

摘要

探索地球大气化学的研究对于当前理解全球挑战至关重要,如气候变化、平流层臭氧消耗以及城市地区空气质量差等问题。这项研究是三个既定领域的协同结合:地球观测,例如使用卫星和实地测量;大气及其化学过程的计算机建模;以及气相分子和气溶胶颗粒的性质与反应性的实验室测量。决定大气成分的相互关联的化学和光化学反应的复杂性对实验室研究提供计算机模型所需的光谱、光化学和动力学数据的能力构成了挑战。在此,我们探讨使用现代电子结构理论和非绝热动力学模拟的计算化学预测是否已足够准确,以补充关于波长依赖性吸收截面、光化学量子产率和反应速率系数的定量实验室数据。借鉴2024年3月举行的CECAM研讨会上的报告和讨论内容,我们阐述光化学理论中的关键概念,概述计算光化学方法的现状,并将其能力与现代实验实验室技术进行比较。基于这些考量,我们对基于严格电子结构理论的计算(光)化学方法成为大气化学研究的第四个核心领域的范围提出了一种观点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1977/11331530/a91ce7a612a9/jp4c03481_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验