Li Jin, Zhang Ling, Cui Jiankun, Lv Xiaojing, Feng Menglong, Ouyang Mi, Chen Zhangxin, Wright Dominic S, Zhang Cheng
International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.
Small. 2023 Nov;19(45):e2303359. doi: 10.1002/smll.202303359. Epub 2023 Jul 7.
This work presents a new strategy to achieve highly stable electrochromic devices and bilayer film construction. A novel solution-processable electrochromic polymer P1-Boc with quinacridone as the conjugated backbone and t-Boc as N-substituted non-conjugated solubilizing groups is designed. Thermal annealing of P1-Boc film results in the cleavage of t-Boc groups and the formation of N─H⋯O═C hydrogen-bonding crosslinked network, which changes its intrinsic solubility characteristics into a solvent-resistant P1 film. This film retains the electrochemical behavior and spectroelectrochemistry properties of the original P1-Boc film. Intriguingly, the electrochromic device based on the P1 film exhibits an ultrafast switching time (0.56/0.80 s at 523 nm) and robust electrochromic stability (retaining 88.4% of the initial optical contrast after 100 000 cycles). The observed cycle lifetime is one of the highest reported for all-organic electrochromic devices. In addition, a black-transparent bilayer electrochromic film P1/P2 is developed in which the use of the solvent-resistant P1 film as the bottom layer avoids interface erosion of the solution-processable polymer in a multilayer stacking.
这项工作提出了一种实现高度稳定的电致变色器件和双层膜结构的新策略。设计了一种新型的可溶液加工的电致变色聚合物P1-Boc,其以喹吖啶酮为共轭主链,叔丁氧羰基(t-Boc)为N-取代的非共轭增溶基团。对P1-Boc薄膜进行热退火会导致t-Boc基团的裂解以及N─H⋯O═C氢键交联网络的形成,从而将其固有溶解性特征转变为耐溶剂的P1薄膜。该薄膜保留了原始P1-Boc薄膜的电化学行为和光谱电化学性质。有趣的是,基于P1薄膜的电致变色器件表现出超快的切换时间(在523 nm处为0.56/0.80 s)和强大的电致变色稳定性(在100 000次循环后保留初始光学对比度的88.4%)。观察到的循环寿命是所有有机电致变色器件中报道的最高值之一。此外,还开发了一种黑色-透明双层电致变色薄膜P1/P2,其中使用耐溶剂的P1薄膜作为底层可避免在多层堆叠中溶液加工聚合物的界面侵蚀。