Suppr超能文献

利用海洋电磁数据表征新西兰希库朗伊海沟南部的孔隙度结构和天然气水合物分布。

Characterizing the porosity structure and gas hydrate distribution at the southern Hikurangi Margin, New Zealand from offshore electromagnetic data.

作者信息

Chesley Christine, Naif Samer, Key Kerry

机构信息

Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.

School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.

出版信息

Geophys J Int. 2023 Jun 19;234(3):2412-2429. doi: 10.1093/gji/ggad243. eCollection 2023 Sep.

Abstract

The dynamics of accretionary prisms and the processes that take place along subduction interfaces are controlled, in part, by the porosity and fluid overpressure of both the forearc wedge and the sediments transported to the system by the subducting plate. The Hikurangi Margin, located offshore the North Island of New Zealand, is a particularly relevant area to investigate the interplay between the consolidation state of incoming plate sediments, dewatering and fluid flow in the accretionary wedge and observed geodetic coupling and megathrust slip behaviour along the plate interface. In its short geographic extent, the margin hosts a diversity of properties that impact subduction processes and that transition from north to south. Its southernmost limit is characterized by frontal accretion, thick sediment subduction, the absence of seafloor roughness, strong interseismic coupling and deep slow slip events. Here we use seafloor magnetotelluric (MT) and controlled-source electromagnetic (CSEM) data collected along a profile through the southern Hikurangi Margin to image the electrical resistivity of the forearc and incoming plate. Resistive anomalies in the shallow forearc likely indicate the presence of gas hydrates, and we relate deeper forerarc resistors to thrust faulting imaged in colocated seismic reflection data. Because MT and CSEM data are highly sensitive to fluid phases in the pore spaces of seafloor sediments and oceanic crust, we convert resistivity to porosity to obtain a representation of fluid distribution along the profile. We show that porosity predicted by the resistivity data can be well fit by an exponential sediment compaction model. By removing this compaction trend from the porosity model, we are able to evaluate the second-order, lateral changes in porosity, an approach that can be applied to EM data sets from other sedimentary basins. Using this porosity anomaly model, we examine the consolidation state of the incoming plate and accretionary wedge sediments. A decrease in porosity observed in the sediments approaching the trench suggests that a protothrust zone is developing ∼25 km seaward of the frontal thrust. Our data also imply that sediments deeper in the accretionary wedge are slightly underconsolidated, which may indicate incomplete drainage and elevated fluid overpressures of the deep wedge.

摘要

增生楔的动力学以及沿俯冲界面发生的过程,部分受弧前楔和由俯冲板块输送至该系统的沉积物的孔隙度和流体超压控制。位于新西兰北岛近海的希库朗伊边缘,是研究进入板块沉积物的固结状态、增生楔中的脱水和流体流动以及沿板块界面观测到的大地测量耦合和巨震逆冲滑动行为之间相互作用的一个特别相关的区域。在其较短的地理范围内,该边缘具有多种影响俯冲过程且从北向南过渡的特性。其最南端的特征是前缘增生、厚层沉积物俯冲、海底无粗糙度、强烈的震间耦合和深部慢滑事件。在此,我们利用沿一条穿过希库朗伊边缘南部的剖面采集的海底大地电磁(MT)和可控源电磁(CSEM)数据,对弧前和进入板块的电阻率进行成像。浅部弧前的电阻异常可能表明存在天然气水合物,并且我们将深部弧前电阻与在同位置地震反射数据中成像的逆冲断层联系起来。由于MT和CSEM数据对海底沉积物和洋壳孔隙空间中的流体相高度敏感,我们将电阻率转换为孔隙度,以获得沿剖面的流体分布情况。我们表明,电阻率数据预测的孔隙度可以通过指数沉积物压实模型很好地拟合。通过从孔隙度模型中去除这种压实趋势,我们能够评估孔隙度的二阶横向变化,这种方法可应用于来自其他沉积盆地的电磁数据集。利用这个孔隙度异常模型,我们研究了进入板块和增生楔沉积物的固结状态。在接近海沟的沉积物中观察到的孔隙度降低表明,一个原逆冲带正在前缘逆冲带向海约25公里处发育。我们的数据还意味着增生楔中更深部的沉积物略微欠固结,这可能表明深部楔体排水不完全且流体超压升高。

相似文献

2
Fluid-rich subducting topography generates anomalous forearc porosity.富流体俯冲地形产生异常前弧孔隙度。
Nature. 2021 Jul;595(7866):255-260. doi: 10.1038/s41586-021-03619-8. Epub 2021 Jul 7.
7
Slow slip source characterized by lithological and geometric heterogeneity.以岩性和几何非均质性为特征的慢滑源。
Sci Adv. 2020 Mar 25;6(13):eaay3314. doi: 10.1126/sciadv.aay3314. eCollection 2020 Mar.

本文引用的文献

1
Fluid-rich subducting topography generates anomalous forearc porosity.富流体俯冲地形产生异常前弧孔隙度。
Nature. 2021 Jul;595(7866):255-260. doi: 10.1038/s41586-021-03619-8. Epub 2021 Jul 7.
3
Slow slip source characterized by lithological and geometric heterogeneity.以岩性和几何非均质性为特征的慢滑源。
Sci Adv. 2020 Mar 25;6(13):eaay3314. doi: 10.1126/sciadv.aay3314. eCollection 2020 Mar.
6
Deep electrical imaging of the ultraslow-spreading Mohns Ridge.对超慢速扩张的 Mohns 海岭的深部电成像。
Nature. 2019 Mar;567(7748):379-383. doi: 10.1038/s41586-019-1010-0. Epub 2019 Mar 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验