Department of Woman and Child Health Sciences, Child Health Area, University Hospital Agostino Gemelli, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Lazio, Italy.
Department of Woman and Child Health Sciences, Child Health Area, Catholic University of Sacred Heart Seat of Rome, Rome, Lazio, Italy.
Pediatr Pulmonol. 2023 Sep;58(9):2610-2618. doi: 10.1002/ppul.26563. Epub 2023 Jul 7.
Artificial intelligence (AI) is a promising field in the neonatal field. We focused on lung ultrasound (LU), a useful tool for the neonatologist. Our aim was to train a neural network to create a model able to interpret LU.
Our multicentric, prospective study included newborns with gestational age (GA) ≥ 33 + 0 weeks with early tachypnea/dyspnea/oxygen requirements. For each baby, three LU were performed: within 3 h of life (T0), at 4-6 h of life (T1), and in the absence of respiratory support (T2). Each scan was processed to extract the region of interest used to train a neural network to classify it according to the LU score (LUS). We assessed sensitivity, specificity, positive and negative predictive value of the AI model's scores in predicting the need for respiratory assistance with nasal continuous positive airway pressure and for surfactant, compared to an already studied and established LUS.
We enrolled 62 newborns (GA = 36 ± 2 weeks). In the prediction of the need for CPAP, we found a cutoff of 6 (at T0) and 5 (at T1) for both the neonatal lung ultrasound score (nLUS) and AI score (AUROC 0.88 for T0 AI model, 0.80 for T1 AI model). For the outcome "need for surfactant therapy", results in terms of area under receiver operator characteristic (AUROC) are 0.84 for T0 AI model and 0.89 for T1 AI model. In the prediction of surfactant therapy, we found a cutoff of 9 for both scores at T0, at T1 the nLUS cutoff was 6, while the AI's one was 5. Classification accuracy was good both at the image and class levels.
This is, to our knowledge, the first attempt to use an AI model to interpret early neonatal LUS and can be extremely useful for neonatologists in the clinical setting.
人工智能(AI)是新生儿领域很有前途的一个领域。我们专注于肺部超声(LU),这是新生儿科医生的有用工具。我们的目的是训练一个神经网络来创建一个能够解释 LU 的模型。
我们的多中心前瞻性研究纳入了胎龄(GA)≥33+0 周且有早期呼吸急促/呼吸困难/需要吸氧的新生儿。每个婴儿进行三次 LU 检查:出生后 3 小时内(T0)、出生后 4-6 小时(T1)和无呼吸支持时(T2)。每次扫描都经过处理,提取感兴趣区域,用于训练神经网络,根据 LU 评分(LUS)对其进行分类。我们评估了 AI 模型评分在预测需要接受鼻塞持续气道正压通气和表面活性剂治疗方面的灵敏度、特异性、阳性和阴性预测值,与已经研究和建立的 LUS 进行比较。
我们共纳入了 62 名新生儿(GA=36±2 周)。在预测需要 CPAP 方面,我们发现 nLUS 和 AI 评分的截断值分别为 6(T0)和 5(T1)(T0 AI 模型的 AUROC 为 0.88,T1 AI 模型为 0.80)。对于“需要表面活性剂治疗”的结果,以接收者操作特征曲线下面积(AUROC)表示,T0 AI 模型为 0.84,T1 AI 模型为 0.89。在预测表面活性剂治疗方面,我们发现 T0 时两个评分的截断值均为 9,T1 时 nLUS 的截断值为 6,而 AI 的截断值为 5。在图像和分类水平上,分类准确性都很好。
这是我们所知的首次尝试使用 AI 模型来解释早期新生儿 LU,可以为临床环境中的新生儿科医生提供极大的帮助。