Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA.
Centro de Optica e Información Cuántica, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, Chile.
Phys Rev Lett. 2023 Jun 23;130(25):256903. doi: 10.1103/PhysRevLett.130.256903.
Spin-lattice relaxation within the nitrogen-vacancy (NV) center's electronic ground-state spin triplet limits its coherence times, and thereby impacts its performance in quantum applications. We report measurements of the relaxation rates on the NV center's |m_{s}=0⟩↔|m_{s}=±1⟩ and |m_{s}=-1⟩↔|m_{s}=+1⟩ transitions as a function of temperature from 9 to 474 K in high-purity samples. We show that the temperature dependencies of the rates are reproduced by an ab initio theory of Raman scattering due to second-order spin-phonon interactions, and we discuss the applicability of the theory to other spin systems. Using a novel analytical model based on these results, we suggest that the high-temperature behavior of NV spin-lattice relaxation is dominated by interactions with two groups of quasilocalized phonons centered at 68.2(17) and 167(12) meV.
氮空位(NV)中心电子基态自旋三重态内的自旋晶格弛豫限制了其相干时间,从而影响了其在量子应用中的性能。我们报告了在高纯样品中,从 9 到 474 K 的温度范围内,NV 中心的 |m_{s}=0⟩↔|m_{s}=±1⟩ 和 |m_{s}=-1⟩↔|m_{s}=+1⟩跃迁的弛豫率随温度的变化关系。我们表明,由于二阶自旋-声子相互作用的拉曼散射的 ab -initio 理论可以重现速率的温度依赖性,并且我们讨论了该理论对其他自旋系统的适用性。利用基于这些结果的新的分析模型,我们建议 NV 自旋晶格弛豫的高温行为主要由与两组准局域声子的相互作用决定,这两组准局域声子的中心位于 68.2(17) 和 167(12) meV。