Suppr超能文献

用于增强光催化产氢的三元双S型InO/SnInS/CdS异质结

Ternary dual S-scheme InO/SnInS/CdS heterojunctions for boosted light-to-hydrogen conversion.

作者信息

He Qiuying, Jin Qijie, Chen Chuanxiang, Wang Jin, Yuan Saisai, Le Shukun, Yang Fu, Yin Yu, Du Feng, Xu Haitao, Zhu Chengzhang

机构信息

School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China.

School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 210009, China.

出版信息

J Colloid Interface Sci. 2023 Nov 15;650(Pt A):416-425. doi: 10.1016/j.jcis.2023.06.211. Epub 2023 Jul 1.

Abstract

Developing artificial S-scheme systems with highly active catalysts is significant to long-term solar-to-hydrogen conversion. Herein, CdS nanodots-modified hierarchical InO/SnInS hollow nanotubes were synthesized by an oil bath method for water splitting. Benefiting from the synergy among the hollow structure, tiny size effect, matched energy level positions, and abundant coupling heterointerfaces, the optimized nanohybrid attains an impressive photocatalytic hydrogen evolution rate of 110.4 µmol/h, and the corresponding apparent quantum yield reaches 9.7% at 420 nm. On InO/SnInS/CdS interfaces, the migration of photoinduced electrons from both CdS and InO to SnInSvia intense electronic interactions contributes to the ternary dual S-scheme modes, which are beneficial to promote faster spatial charge separation, deliver better visible light-harvesting ability, and provide more reaction active sites with high potentials. This work reveals protocols for rational design of on-demand S-scheme heterojunctions for sustainably converting solar energy into hydrogen in the absence of precious metals.

摘要

开发具有高活性催化剂的人工S型体系对于长期太阳能制氢转化具有重要意义。在此,通过油浴法合成了CdS纳米点修饰的分级InO/SnInS中空纳米管用于水分解。得益于中空结构、微小尺寸效应、匹配的能级位置和丰富的耦合异质界面之间的协同作用,优化后的纳米杂化物实现了令人印象深刻的110.4 μmol/h的光催化析氢速率,并且在420 nm处相应的表观量子产率达到9.7%。在InO/SnInS/CdS界面上,光生电子通过强烈的电子相互作用从CdS和InO两者迁移到SnInS,这有助于形成三元双S型模式,有利于促进更快的空间电荷分离,提供更好的可见光捕获能力,并提供更多具有高电位的反应活性位点。这项工作揭示了在无贵金属的情况下合理设计按需S型异质结以将太阳能可持续转化为氢的方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验