Suppr超能文献

通过拟共形几何和卷积神经网络实现大脑皮质表面的自动地标检测和配准。

Automatic landmark detection and registration of brain cortical surfaces via quasi-conformal geometry and convolutional neural networks.

机构信息

Department of Mathematics, The Chinese University of Hong Kong, Hong Kong.

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

Comput Biol Med. 2023 Sep;163:107185. doi: 10.1016/j.compbiomed.2023.107185. Epub 2023 Jun 17.

Abstract

In medical imaging, surface registration is extensively used for performing systematic comparisons between anatomical structures, with a prime example being the highly convoluted brain cortical surfaces. To obtain a meaningful registration, a common approach is to identify prominent features on the surfaces and establish a low-distortion mapping between them with the feature correspondence encoded as landmark constraints. Prior registration works have primarily focused on using manually labeled landmarks and solving highly nonlinear optimization problems, which are time-consuming and hence hinder practical applications. In this work, we propose a novel framework for the automatic landmark detection and registration of brain cortical surfaces using quasi-conformal geometry and convolutional neural networks. We first develop a landmark detection network (LD-Net) that allows for the automatic extraction of landmark curves given two prescribed starting and ending points based on the surface geometry. We then utilize the detected landmarks and quasi-conformal theory for achieving the surface registration. Specifically, we develop a coefficient prediction network (CP-Net) for predicting the Beltrami coefficients associated with the desired landmark-based registration and a mapping network called the disk Beltrami solver network (DBS-Net) for generating quasi-conformal mappings from the predicted Beltrami coefficients, with the bijectivity guaranteed by quasi-conformal theory. Experimental results are presented to demonstrate the effectiveness of our proposed framework. Altogether, our work paves a new way for surface-based morphometry and medical shape analysis.

摘要

在医学成像中,曲面配准被广泛用于对解剖结构进行系统比较,其中一个典型的例子是高度复杂的大脑皮质曲面。为了获得有意义的配准,一种常见的方法是识别曲面上的显著特征,并通过特征对应编码为地标约束,在它们之间建立低失真映射。先前的配准工作主要集中在使用手动标记地标和解决高度非线性优化问题上,这既耗时又妨碍了实际应用。在这项工作中,我们提出了一种使用拟共形几何和卷积神经网络自动检测和配准大脑皮质曲面的地标框架。我们首先开发了一个地标检测网络(LD-Net),它允许根据曲面几何形状自动提取给定两个规定的起始点和终点的地标曲线。然后,我们利用检测到的地标和拟共形理论进行曲面配准。具体来说,我们开发了一个系数预测网络(CP-Net)来预测与所需地标配准相关的 Beltrami 系数,以及一个名为磁盘 Beltrami 求解器网络(DBS-Net)的映射网络,用于从预测的 Beltrami 系数生成拟共形映射,通过拟共形理论保证双射性。实验结果表明了我们提出的框架的有效性。总的来说,我们的工作为基于曲面的形态计量学和医学形状分析开辟了一条新途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验