Suppr超能文献

基于线性唯象传热定律的不可逆斯特林热机的四目标优化

Four-Objective Optimization of an Irreversible Stirling Heat Engine with Linear Phenomenological Heat-Transfer Law.

作者信息

Xu Haoran, Chen Lingen, Ge Yanlin, Feng Huijun

机构信息

Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China.

Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China.

出版信息

Entropy (Basel). 2022 Oct 19;24(10):1491. doi: 10.3390/e24101491.

Abstract

This paper combines the mechanical efficiency theory and finite time thermodynamic theory to perform optimization on an irreversible Stirling heat-engine cycle, in which heat transfer between working fluid and heat reservoir obeys linear phenomenological heat-transfer law. There are mechanical losses, as well as heat leakage, thermal resistance, and regeneration loss. We treated temperature ratio x of working fluid and volume compression ratio λ as optimization variables, and used the NSGA-II algorithm to carry out multi-objective optimization on four optimization objectives, namely, dimensionless shaft power output P¯s, braking thermal efficiency ηs, dimensionless efficient power E¯p and dimensionless power density P¯d. The optimal solutions of four-, three-, two-, and single-objective optimizations are reached by selecting the minimum deviation indexes D with the three decision-making strategies, namely, TOPSIS, LINMAP, and Shannon Entropy. The optimization results show that the D reached by TOPSIS and LINMAP strategies are both 0.1683 and better than the Shannon Entropy strategy for four-objective optimization, while the Ds reached for single-objective optimizations at maximum P¯s, ηs, E¯p, and P¯d conditions are 0.1978, 0.8624, 0.3319, and 0.3032, which are all bigger than 0.1683. This indicates that multi-objective optimization results are better when choosing appropriate decision-making strategies.

摘要

本文结合机械效率理论和有限时间热力学理论,对不可逆斯特林热机循环进行优化,其中工作流体与热库之间的热传递服从线性唯象传热定律。存在机械损失以及热泄漏、热阻和回热损失。我们将工作流体的温度比x和体积压缩比λ作为优化变量,并使用NSGA-II算法对无量纲轴功率输出P¯s、制动热效率ηs、无量纲有效功率E¯p和无量纲功率密度P¯d这四个优化目标进行多目标优化。通过采用TOPSIS、LINMAP和香农熵这三种决策策略选择最小偏差指标D,得到了四目标、三目标、两目标和单目标优化的最优解。优化结果表明,对于四目标优化,TOPSIS和LINMAP策略得到的D均为0.1683,优于香农熵策略,而在最大P¯s、ηs、E¯p和P¯d条件下单目标优化得到的Ds分别为0.1978、0.8624、0.3319和0.3032,均大于0.1683。这表明选择合适的决策策略时多目标优化结果更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bda/9601289/4989908e4341/entropy-24-01491-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验