Instituto "Ignacio da Riva" (IDR), Universidad Politécnica de Madrid, 28040 Madrid, Spain.
ETSIAE, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
Sensors (Basel). 2023 Jun 12;23(12):5515. doi: 10.3390/s23125515.
Despite several existing techniques for distributed sensing (temperature and strain) using standard Single-Mode optical Fiber (SMF), compensating or decoupling both effects is mandatory for many applications. Currently, most decoupling techniques require special optical fibers and are difficult to implement with high-spatial-resolution distributed techniques, such as OFDR. Therefore, this work's objective is to study the feasibility of decoupling temperature and strain out of the readouts of a phase and polarization analyzer OFDR (ϕ-PA-OFDR) taken over an SMF. For this purpose, the readouts will be subjected to a study using several machine learning algorithms, among them Deep Neural Networks. The motivation that underlies this target is the current blockage in the widespread use of Fiber Optic Sensors in situations where both strain and temperature change, due to the coupled dependence of currently developed sensing methods. Instead of using other types of sensors or even other interrogation methods, the objective of this work is to analyze the available information in order to develop a sensing method capable of providing information about strain and temperature simultaneously.
尽管使用标准单模光纤 (SMF) 存在几种用于分布式传感(温度和应变)的现有技术,但对于许多应用来说,补偿或解耦这两种效应是强制性的。目前,大多数解耦技术需要特殊的光纤,并且难以与高空间分辨率的分布式技术(如 OFDR)结合使用。因此,这项工作的目的是研究在 SMF 上进行的相位和偏振分析仪 OFDR(ϕ-PA-OFDR)的读出中,是否可以解耦温度和应变。为此,将使用几种机器学习算法(包括深度神经网络)对读出进行研究。这一目标的动机是,由于目前开发的传感方法的耦合依赖性,在应变和温度同时发生变化的情况下,光纤传感器的广泛应用受到了阻碍。这项工作的目的不是使用其他类型的传感器甚至其他询问方法,而是分析可用信息,以开发一种能够同时提供应变和温度信息的传感方法。