Suppr超能文献

参数漂移随机系统的最优控制算法。

Optimal Control Algorithm for Stochastic Systems with Parameter Drift.

机构信息

School of Electronic Information Engineering, Xi'an Technological University, Xi'an 710021, China.

出版信息

Sensors (Basel). 2023 Jun 20;23(12):5743. doi: 10.3390/s23125743.

Abstract

A novel optimal control problem is considered for multiple input multiple output (MIMO) stochastic systems with mixed parameter drift, external disturbance and observation noise. The proposed controller can not only track and identify the drift parameters in finite time but, furthermore, drive the system to move towards the desired trajectory. However, there is a conflict between control and estimation, which makes the analytic solution unattainable in most situations. A dual control algorithm based on weight factor and innovation is, therefore, proposed. First, the innovation is added to the control goal by the appropriate weight and the Kalman filter is introduced to estimate and track the transformed drift parameters. The weight factor is used to adjust the degree of drift parameter estimation in order to achieve a balance between control and estimation. Then, the optimal control is derived by solving the modified optimization problem. In this strategy, the analytic solution of the control law can be obtained. The control law obtained in this paper is optimal because the estimation of drift parameters is integrated into the objective function rather than the suboptimal control law, which includes two parts of control and estimation in other studies. The proposed algorithm can achieve the best compromise between optimization and estatimation. Finally, the effectiveness of the algorithm is verified by numerical experiments in two different cases.

摘要

考虑了一类具有混合参数时变、外部干扰和观测噪声的多输入多输出(MIMO)随机系统的新的最优控制问题。所提出的控制器不仅可以在有限时间内跟踪和识别时变参数,而且可以驱动系统向期望轨迹移动。然而,控制和估计之间存在冲突,这使得在大多数情况下无法获得解析解。因此,提出了一种基于权重因子和创新的双控制算法。首先,通过适当的权重将创新加入到控制目标中,并引入卡尔曼滤波器来估计和跟踪转换后的时变参数。权重因子用于调整时变参数估计的程度,以在控制和估计之间达到平衡。然后,通过求解修正后的优化问题推导出最优控制。在该策略中,可以得到控制律的解析解。本文得到的控制律是最优的,因为时变参数的估计被集成到目标函数中,而不是其他研究中包含控制和估计两部分的次优控制律。所提出的算法可以在优化和估计之间取得最佳折衷。最后,通过在两种不同情况下的数值实验验证了算法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0086/10305094/48db1a48fa3b/sensors-23-05743-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验