Grupo de Investigación e Innovación Ambiental (GIIAM), Institución Universitaria Pascual Bravo, Medellín, Colombia.
Grupo de Investigación e Innovación Ambiental (GIIAM), Institución Universitaria Pascual Bravo, Medellín, Colombia.
Biophys J. 2023 Aug 22;122(16):3268-3298. doi: 10.1016/j.bpj.2023.07.004. Epub 2023 Jul 7.
The convective delivery of chemotherapeutic drugs in cancerous tissues is directly proportional to the blood perfusion rate, which in turns can be transiently reduced by the application of high-voltage and short-duration electric pulses due to vessel vasoconstriction. However, electric pulses can also increase vessel wall and cell membrane permeabilities, boosting the extravasation and cell internalization of drug. These opposite effects, as well as possible adverse impacts on the viability of tissues and endothelial cells, suggest the importance of conducting in silico studies about the influence of physical parameters involved in electric-mediated drug transport. In the present work, the global method of approximate particular solutions for axisymmetric domains, together with two solution schemes (Gauss-Seidel iterative and linearization+successive over-relaxation), is applied for the simulation of drug transport in electroporated cancer tissues, using a continuum tumor cord approach and considering both the electropermeabilization and vasoconstriction phenomena. The developed global method of approximate particular solutions algorithm is validated with numerical and experimental results previously published, obtaining a satisfactory accuracy and convergence. Then, a parametric study about the influence of electric field magnitude and inlet blood velocity on the internalization efficacy, drug distribution uniformity, and cell-kill capacity of the treatment, as expressed by the number of internalized moles into viable cells, homogeneity of exposure to bound intracellular drug, and cell survival fraction, respectively, is analyzed for three pharmacokinetic profiles, namely one-short tri-exponential, mono-exponential, and uniform. According to numerical results, the trade-off between vasoconstriction and electropermeabilization effects and, consequently, the influence of electric field magnitude and inlet blood velocity on the assessment parameters considered here (efficacy, uniformity, and cell-kill capacity) is different for each pharmacokinetic profile deemed.
化疗药物在癌组织中的对流输送与血液灌注率成正比,而由于血管收缩,高电压短脉冲的应用会导致灌注率暂时降低。然而,电脉冲也可以增加血管壁和细胞膜的通透性,促进药物的外渗和细胞内化。这些相反的效应,以及对组织和内皮细胞活力的可能不利影响,表明进行关于涉及电介导药物输送的物理参数影响的计算研究的重要性。在目前的工作中,轴对称域的近似特殊解全局方法,以及两种求解方案(高斯-赛德尔迭代和线性化+逐次超松弛),被应用于电穿孔癌组织中的药物传输模拟,采用连续肿瘤索方法,并考虑电穿孔和血管收缩现象。开发的近似特殊解全局方法算法通过以前发表的数值和实验结果进行了验证,获得了令人满意的准确性和收敛性。然后,针对三种药代动力学分布(单短三指数、单指数和均匀分布),分析了电场强度和入口血流速度对内化效果、药物分布均匀性和治疗的细胞杀伤能力的影响,分别用进入存活细胞的内化摩尔数、结合细胞内药物暴露的均匀性和细胞存活分数来表示。根据数值结果,血管收缩和电穿孔效应之间的权衡,以及电场强度和入口血流速度对这里考虑的评估参数(效果、均匀性和细胞杀伤能力)的影响,对于每种药代动力学分布都是不同的。