Suppr超能文献

基于深度学习和迁移学习方法的心电和活动数据的自动睡眠分期。

Automatic sleep-stage classification of heart rate and actigraphy data using deep and transfer learning approaches.

机构信息

Department of Physics, Bar-Ilan University, Ramat Gan, Israel.

Institute of Medical Epidemiology, Biometrics and Informatics (IMEBI), Interdisciplinary Center for Health Sciences, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany; Institute of Physics, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany.

出版信息

Comput Biol Med. 2023 Sep;163:107193. doi: 10.1016/j.compbiomed.2023.107193. Epub 2023 Jun 22.

Abstract

Manual sleep-stage scoring based on full-night polysomnography data recorded in a sleep lab has been the gold standard of clinical sleep medicine. This costly and time-consuming approach is unfit for long-term studies as well as assessment of sleep on a population level. With the vast amount of physiological data becoming available from wrist-worn devices, deep learning techniques provide an opportunity for fast and reliable automatic sleep-stage classification tasks. However, training a deep neural network requires large annotated sleep databases, which are not available for long-term epidemiological studies. In this paper, we introduce an end-to-end temporal convolutional neural network able to automatically score sleep stages from raw heartbeat RR interval (RRI) and wrist actigraphy data. Moreover, a transfer learning approach enables the training of the network on a large public database (Sleep Heart Health Study, SHHS) and its subsequent application to a much smaller database recorded by a wristband device. The transfer learning significantly shortens training time and improves sleep-scoring accuracy from 68.9% to 73.8% and inter-rater reliability (Cohen's kappa) from 0.51 to 0.59. We also found that for the SHHS database, automatic sleep-scoring accuracy using deep learning shows a logarithmic relationship with the training size. Although deep learning approaches for automatic sleep scoring are not yet comparable to the inter-rater reliability among sleep technicians, performance is expected to significantly improve in the near future when more large public databases become available. We anticipate those deep learning techniques, when combined with our transfer learning approach, will leverage automatic sleep scoring of physiological data from wearable devices and enable the investigation of sleep in large cohort studies.

摘要

基于睡眠实验室中整晚多导睡眠图(polysomnography)数据进行手动睡眠分期一直是临床睡眠医学的金标准。这种昂贵且耗时的方法不适合长期研究以及人群水平的睡眠评估。随着可从腕戴设备获得的大量生理数据,深度学习技术为快速可靠的自动睡眠分期任务提供了机会。然而,训练深度神经网络需要大量标注的睡眠数据库,而这些数据库不适用于长期的流行病学研究。在本文中,我们介绍了一种端到端的时间卷积神经网络,能够自动从原始心跳 RR 间隔(RRI)和腕部运动数据评分睡眠阶段。此外,迁移学习方法能够在大型公共数据库(睡眠心脏健康研究,SHHS)上对网络进行训练,并随后将其应用于腕带设备记录的小得多的数据库。迁移学习大大缩短了训练时间,将睡眠评分准确性从 68.9%提高到 73.8%,并提高了组内相关系数(Cohen's kappa)从 0.51 到 0.59。我们还发现,对于 SHHS 数据库,使用深度学习的自动睡眠评分准确性与训练规模呈对数关系。尽管自动睡眠评分的深度学习方法与睡眠技术人员之间的组内相关系数尚不可比,但当更多大型公共数据库可用时,预计在不久的将来性能将显著提高。我们预计,这些深度学习技术与我们的迁移学习方法相结合,将利用可穿戴设备的生理数据进行自动睡眠评分,并能够在大型队列研究中调查睡眠。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验