Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Henan Province, China.
Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Henan Province, China.
Nat Commun. 2023 Jul 8;14(1):4053. doi: 10.1038/s41467-023-39861-z.
The high inter-individual heterogeneity in individuals with depression limits neuroimaging studies with case-control approaches to identify promising biomarkers for individualized clinical decision-making. We put forward a framework integrating the normative model and non-negative matrix factorization (NMF) to quantitatively assess altered gray matter morphology in depression from a dimensional perspective. The proposed framework parses altered gray matter morphology into overlapping latent disease factors, and assigns patients distinct factor compositions, thus preserving inter-individual variability. We identified four robust disease factors with distinct clinical symptoms and cognitive processes in depression. In addition, we showed the quantitative relationship between the group-level gray matter morphological differences and disease factors. Furthermore, this framework significantly predicted factor compositions of patients in an independent dataset. The framework provides an approach to resolve neuroanatomical heterogeneity in depression.
抑郁症个体之间的高度个体异质性限制了采用病例对照方法的神经影像学研究,难以确定用于个体化临床决策的有前途的生物标志物。我们提出了一个框架,该框架结合了规范模型和非负矩阵分解(NMF),从维度角度定量评估抑郁症中灰质形态的改变。该框架将改变的灰质形态解析为重叠的潜在疾病因素,并为患者分配不同的因子组成,从而保留个体间的可变性。我们在抑郁症中确定了四个具有不同临床症状和认知过程的稳健疾病因素。此外,我们还展示了组水平的灰质形态差异与疾病因素之间的定量关系。此外,该框架可以显著预测独立数据集患者的因子组成。该框架为解决抑郁症中的神经解剖学异质性提供了一种方法。