Suppr超能文献

一种基于分布式进化方法的新型神经网络模型,用于大数据分类。

A novel neural network model with distributed evolutionary approach for big data classification.

机构信息

Department of Computer Applications, Cochin University of Science and Technology, Cochin, Kerala, India.

Department of Computer Science, Cochin University of Science and Technology, Cochin, Kerala, India.

出版信息

Sci Rep. 2023 Jul 8;13(1):11052. doi: 10.1038/s41598-023-37540-z.

Abstract

The considerable improvement of technology produced for various applications has resulted in a growth in data sizes, such as healthcare data, which is renowned for having a large number of variables and data samples. Artificial neural networks (ANN) have demonstrated adaptability and effectiveness in classification, regression, and function approximation tasks. ANN is used extensively in function approximation, prediction, and classification. Irrespective of the task, ANN learns from the data by adjusting the edge weights to minimize the error between the actual and predicted values. Back Propagation is the most frequent learning technique that is used to learn the weights of ANN. However, this approach is prone to the problem of sluggish convergence, which is especially problematic in the case of Big Data. In this paper, we propose a Distributed Genetic Algorithm based ANN Learning Algorithm for addressing challenges associated with ANN learning for Big data. Genetic Algorithm is one of the well-utilized bio-inspired combinatorial optimization methods. Also, it is possible to parallelize it at multiple stages, and this may be done in an extremely effective manner for the distributed learning process. The proposed model is tested with various datasets to evaluate its realizability and efficiency. The results obtained from the experiments show that after a specific volume of data, the proposed learning method outperformed the traditional methods in terms of convergence time and accuracy. The proposed model outperformed the traditional model by almost 80% improvement in computational time.

摘要

各种应用产生的技术有了相当大的改进,导致数据规模的增长,例如医疗保健数据,其以大量变量和数据样本而闻名。人工神经网络(ANN)在分类、回归和函数逼近任务中表现出了适应性和有效性。ANN 在函数逼近、预测和分类中得到了广泛的应用。无论任务是什么,ANN 通过调整边缘权重来学习数据,以最小化实际值和预测值之间的误差。反向传播是最常用的学习技术,用于学习 ANN 的权重。然而,这种方法容易出现收敛缓慢的问题,在大数据的情况下尤其成问题。在本文中,我们提出了一种基于分布式遗传算法的 ANN 学习算法,用于解决与大数据的 ANN 学习相关的挑战。遗传算法是一种应用广泛的受生物启发的组合优化方法。此外,它可以在多个阶段进行并行化,这对于分布式学习过程来说可能是非常有效的。我们使用各种数据集来测试所提出的模型,以评估其可行性和效率。实验结果表明,在特定的数据量之后,与传统方法相比,所提出的学习方法在收敛时间和准确性方面表现更好。所提出的模型在计算时间方面的改进几乎达到了 80%,优于传统模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a6c/10329680/81c752735b7b/41598_2023_37540_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验