文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于轻量化 YOLOv4 网络的铝表面缺陷检测方法。

Aluminum surface defect detection method based on a lightweight YOLOv4 network.

机构信息

College of Information Engineering, Dalian Ocean University, Dalian, 116021, China.

出版信息

Sci Rep. 2023 Jul 8;13(1):11077. doi: 10.1038/s41598-023-38085-x.


DOI:10.1038/s41598-023-38085-x
PMID:37422570
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10329709/
Abstract

Deep learning is currently being used to automate surface defect detection in aluminum. The common target detection models based on neural networks often have a large number of parameters and a slow detection speed, which is not conducive to real-time detection. Therefore, this paper proposes a lightweight aluminum surface defect detection model, M2-BL-YOLOv4, based on the YOLOv4 algorithm. First, in the YOLOv4 model, the complex CSPDarkNet53 backbone network was modified into an inverted residual structure, which greatly reduced the number of parameters in the model and increased the detection speed. Second, a new feature fusion network, BiFPN-Lite, is designed to improve the fusion ability of the network and further improve its detection accuracy. The final results show that the mean average precision of the improved lightweight YOLOv4 algorithm in the aluminum surface defect test set reaches 93.5%, the number of model parameters is reduced to 60% of the original, and the number of frames per second (FPS) detected is 52.99, which increases the detection speed by 30%. The efficient detection of aluminum surface defects is realized.

摘要

深度学习目前正被用于实现铝表面缺陷的自动化检测。常见的基于神经网络的目标检测模型通常具有大量的参数和较慢的检测速度,不利于实时检测。因此,本文提出了一种基于 YOLOv4 算法的轻量化铝表面缺陷检测模型 M2-BL-YOLOv4。首先,在 YOLOv4 模型中,将复杂的 CSPDarkNet53 骨干网络修改为倒置残差结构,大大减少了模型的参数量,并提高了检测速度。其次,设计了一种新的特征融合网络 BiFPN-Lite,以提高网络的融合能力,进一步提高其检测精度。最终的实验结果表明,改进后的轻量化 YOLOv4 算法在铝表面缺陷测试集上的平均准确率达到 93.5%,模型参数数量减少到原始模型的 60%,检测帧率(FPS)达到 52.99,检测速度提高了 30%。实现了对铝表面缺陷的高效检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c029/10329709/e84c831b8139/41598_2023_38085_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c029/10329709/57f92d0033ba/41598_2023_38085_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c029/10329709/5082ab916a3e/41598_2023_38085_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c029/10329709/c4510845b3af/41598_2023_38085_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c029/10329709/bc23fab1c19b/41598_2023_38085_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c029/10329709/c80d3b6715d2/41598_2023_38085_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c029/10329709/80aad92c7d55/41598_2023_38085_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c029/10329709/dc1c1fa9c0ec/41598_2023_38085_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c029/10329709/d4a79a3f70f9/41598_2023_38085_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c029/10329709/e84c831b8139/41598_2023_38085_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c029/10329709/57f92d0033ba/41598_2023_38085_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c029/10329709/5082ab916a3e/41598_2023_38085_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c029/10329709/c4510845b3af/41598_2023_38085_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c029/10329709/bc23fab1c19b/41598_2023_38085_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c029/10329709/c80d3b6715d2/41598_2023_38085_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c029/10329709/80aad92c7d55/41598_2023_38085_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c029/10329709/dc1c1fa9c0ec/41598_2023_38085_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c029/10329709/d4a79a3f70f9/41598_2023_38085_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c029/10329709/e84c831b8139/41598_2023_38085_Fig9_HTML.jpg

相似文献

[1]
Aluminum surface defect detection method based on a lightweight YOLOv4 network.

Sci Rep. 2023-7-8

[2]
EBE-YOLOv4: A lightweight detecting model for pine cones in forest.

Front Plant Sci. 2022-11-11

[3]
Research on Insulator Defect Detection Based on an Improved MobilenetV1-YOLOv4.

Entropy (Basel). 2022-11-2

[4]
Lightweight Helmet Detection Algorithm Using an Improved YOLOv4.

Sensors (Basel). 2023-1-21

[5]
A New Deep Model for Detecting Multiple Moving Targets in Real Traffic Scenarios: Machine Vision-Based Vehicles.

Sensors (Basel). 2022-5-14

[6]
A Study on Railway Surface Defects Detection Based on Machine Vision.

Entropy (Basel). 2021-10-30

[7]
A Lightweight Vehicle-Pedestrian Detection Algorithm Based on Attention Mechanism in Traffic Scenarios.

Sensors (Basel). 2022-11-4

[8]
Study on Detection and Recognition of Traffic Lights Based on Improved YOLOv4.

Sensors (Basel). 2022-10-13

[9]
Precision Detection of Dense Plums in Orchards Using the Improved YOLOv4 Model.

Front Plant Sci. 2022-3-11

[10]
Improvement of Lightweight Convolutional Neural Network Model Based on YOLO Algorithm and Its Research in Pavement Defect Detection.

Sensors (Basel). 2022-5-6

引用本文的文献

[1]
Hyperbolic geometry enhanced feature filtering network for industrial anomaly detection.

Sci Rep. 2025-7-15

[2]
Multi-defect detection and classification for aluminum alloys with enhanced YOLOv8.

PLoS One. 2025-3-20

[3]
RJ-TinyViT: an efficient vision transformer for red jujube defect classification.

Sci Rep. 2024-11-13

[4]
An algorithm for power transmission line fault detection based on improved YOLOv4 model.

Sci Rep. 2024-2-29

本文引用的文献

[1]
Research on Recognition Technology of Aluminum Profile Surface Defects Based on Deep Learning.

Materials (Basel). 2019-5-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索