School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
Key Laboratory of Industrial Internet of Things & Networked Control, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
Sensors (Basel). 2023 Jan 21;23(3):1256. doi: 10.3390/s23031256.
Safety helmet wearing plays a major role in protecting the safety of workers in industry and construction, so a real-time helmet wearing detection technology is very necessary. This paper proposes an improved YOLOv4 algorithm to achieve real-time and efficient safety helmet wearing detection. The improved YOLOv4 algorithm adopts a lightweight network PP-LCNet as the backbone network and uses deepwise separable convolution to decrease the model parameters. Besides, the coordinate attention mechanism module is embedded in the three output feature layers of the backbone network to enhance the feature information, and an improved feature fusion structure is designed to fuse the target information. In terms of the loss function, we use a new SIoU loss function that fuses directional information to increase detection precision. The experimental findings demonstrate that the improved YOLOv4 algorithm achieves an accuracy of 92.98%, a model size of 41.88 M, and a detection speed of 43.23 pictures/s. Compared with the original YOLOv4, the accuracy increases by 0.52%, the model size decreases by about 83%, and the detection speed increases by 88%. Compared with other existing methods, it performs better in terms of precision and speed.
安全帽的佩戴对于保护工业和建筑工人的安全起着重要作用,因此实时的安全帽佩戴检测技术是非常必要的。本文提出了一种改进的 YOLOv4 算法,以实现实时、高效的安全帽佩戴检测。改进的 YOLOv4 算法采用轻量化网络 PP-LCNet 作为骨干网络,并使用深度可分离卷积来减少模型参数。此外,在骨干网络的三个输出特征层中嵌入了坐标注意力机制模块,以增强特征信息,并设计了一种改进的特征融合结构来融合目标信息。在损失函数方面,我们使用了一种新的 SIoU 损失函数,该函数融合了方向信息,以提高检测精度。实验结果表明,改进的 YOLOv4 算法的准确率达到 92.98%,模型大小为 41.88M,检测速度为 43.23 张/秒。与原始的 YOLOv4 相比,准确率提高了 0.52%,模型大小减少了约 83%,检测速度提高了 88%。与其他现有的方法相比,在精度和速度方面表现更好。
Sensors (Basel). 2023-1-21
Math Biosci Eng. 2023-3-6
Entropy (Basel). 2021-11-27
Sensors (Basel). 2022-9-5
Front Neurorobot. 2023-7-18
Entropy (Basel). 2022-11-2
PeerJ Comput Sci. 2023-3-22
Sensors (Basel). 2023-1-20
Front Plant Sci. 2022-3-11
Sci Rep. 2025-5-27
Sensors (Basel). 2024-5-12
Sci Rep. 2024-3-25
Entropy (Basel). 2021-11-27
Sensors (Basel). 2021-5-17
Sensors (Basel). 2020-12-5
IEEE Trans Pattern Anal Mach Intell. 2015-9