文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于改进 YOLOv4 的轻量化头盔检测算法

Lightweight Helmet Detection Algorithm Using an Improved YOLOv4.

机构信息

School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.

Key Laboratory of Industrial Internet of Things & Networked Control, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.

出版信息

Sensors (Basel). 2023 Jan 21;23(3):1256. doi: 10.3390/s23031256.


DOI:10.3390/s23031256
PMID:36772297
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9919412/
Abstract

Safety helmet wearing plays a major role in protecting the safety of workers in industry and construction, so a real-time helmet wearing detection technology is very necessary. This paper proposes an improved YOLOv4 algorithm to achieve real-time and efficient safety helmet wearing detection. The improved YOLOv4 algorithm adopts a lightweight network PP-LCNet as the backbone network and uses deepwise separable convolution to decrease the model parameters. Besides, the coordinate attention mechanism module is embedded in the three output feature layers of the backbone network to enhance the feature information, and an improved feature fusion structure is designed to fuse the target information. In terms of the loss function, we use a new SIoU loss function that fuses directional information to increase detection precision. The experimental findings demonstrate that the improved YOLOv4 algorithm achieves an accuracy of 92.98%, a model size of 41.88 M, and a detection speed of 43.23 pictures/s. Compared with the original YOLOv4, the accuracy increases by 0.52%, the model size decreases by about 83%, and the detection speed increases by 88%. Compared with other existing methods, it performs better in terms of precision and speed.

摘要

安全帽的佩戴对于保护工业和建筑工人的安全起着重要作用,因此实时的安全帽佩戴检测技术是非常必要的。本文提出了一种改进的 YOLOv4 算法,以实现实时、高效的安全帽佩戴检测。改进的 YOLOv4 算法采用轻量化网络 PP-LCNet 作为骨干网络,并使用深度可分离卷积来减少模型参数。此外,在骨干网络的三个输出特征层中嵌入了坐标注意力机制模块,以增强特征信息,并设计了一种改进的特征融合结构来融合目标信息。在损失函数方面,我们使用了一种新的 SIoU 损失函数,该函数融合了方向信息,以提高检测精度。实验结果表明,改进的 YOLOv4 算法的准确率达到 92.98%,模型大小为 41.88M,检测速度为 43.23 张/秒。与原始的 YOLOv4 相比,准确率提高了 0.52%,模型大小减少了约 83%,检测速度提高了 88%。与其他现有的方法相比,在精度和速度方面表现更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7180/9919412/7795da840649/sensors-23-01256-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7180/9919412/136c2e7dcc1a/sensors-23-01256-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7180/9919412/af5afcb02530/sensors-23-01256-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7180/9919412/9e47c91588e0/sensors-23-01256-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7180/9919412/48d253ed24ee/sensors-23-01256-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7180/9919412/73296760c454/sensors-23-01256-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7180/9919412/2687b6c632d3/sensors-23-01256-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7180/9919412/731cdab19dc2/sensors-23-01256-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7180/9919412/1c71f54fbeba/sensors-23-01256-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7180/9919412/a77c7b7e9fba/sensors-23-01256-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7180/9919412/e763c40b0be3/sensors-23-01256-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7180/9919412/16233d91a4f7/sensors-23-01256-g011a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7180/9919412/7795da840649/sensors-23-01256-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7180/9919412/136c2e7dcc1a/sensors-23-01256-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7180/9919412/af5afcb02530/sensors-23-01256-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7180/9919412/9e47c91588e0/sensors-23-01256-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7180/9919412/48d253ed24ee/sensors-23-01256-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7180/9919412/73296760c454/sensors-23-01256-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7180/9919412/2687b6c632d3/sensors-23-01256-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7180/9919412/731cdab19dc2/sensors-23-01256-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7180/9919412/1c71f54fbeba/sensors-23-01256-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7180/9919412/a77c7b7e9fba/sensors-23-01256-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7180/9919412/e763c40b0be3/sensors-23-01256-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7180/9919412/16233d91a4f7/sensors-23-01256-g011a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7180/9919412/7795da840649/sensors-23-01256-g012.jpg

相似文献

[1]
Lightweight Helmet Detection Algorithm Using an Improved YOLOv4.

Sensors (Basel). 2023-1-21

[2]
Research on application of helmet wearing detection improved by YOLOv4 algorithm.

Math Biosci Eng. 2023-3-6

[3]
A Lightweight YOLOv4-Based Forestry Pest Detection Method Using Coordinate Attention and Feature Fusion.

Entropy (Basel). 2021-11-27

[4]
Workshop Safety Helmet Wearing Detection Model Based on SCM-YOLO.

Sensors (Basel). 2022-9-5

[5]
E-YOLOv4-tiny: a traffic sign detection algorithm for urban road scenarios.

Front Neurorobot. 2023-7-18

[6]
Research on Insulator Defect Detection Based on an Improved MobilenetV1-YOLOv4.

Entropy (Basel). 2022-11-2

[7]
A novel algorithm for small object detection based on YOLOv4.

PeerJ Comput Sci. 2023-3-22

[8]
A Lightweight Algorithm for Insulator Target Detection and Defect Identification.

Sensors (Basel). 2023-1-20

[9]
Aluminum surface defect detection method based on a lightweight YOLOv4 network.

Sci Rep. 2023-7-8

[10]
Precision Detection of Dense Plums in Orchards Using the Improved YOLOv4 Model.

Front Plant Sci. 2022-3-11

引用本文的文献

[1]
Safety helmet detection methods in heavy machinery factory.

Sci Rep. 2025-5-27

[2]
Real-Time Recognition Algorithm of Small Target for UAV Infrared Detection.

Sensors (Basel). 2024-5-12

[3]
Research on helmet wearing detection method based on deep learning.

Sci Rep. 2024-3-25

[4]
Pedestrian detection algorithm integrating large kernel attention and YOLOV5 lightweight model.

PLoS One. 2023

本文引用的文献

[1]
A Lightweight YOLOv4-Based Forestry Pest Detection Method Using Coordinate Attention and Feature Fusion.

Entropy (Basel). 2021-11-27

[2]
Fast Personal Protective Equipment Detection for Real Construction Sites Using Deep Learning Approaches.

Sensors (Basel). 2021-5-17

[3]
A Two-Stage Fall Recognition Algorithm Based on Human Posture Features.

Sensors (Basel). 2020-12-5

[4]
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.

IEEE Trans Pattern Anal Mach Intell. 2015-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索