Suppr超能文献

在有限数据场景下通过逐步迁移学习实现专家级小儿脑肿瘤分割

Expert-level pediatric brain tumor segmentation in a limited data scenario with stepwise transfer learning.

作者信息

Boyd Aidan, Ye Zezhong, Prabhu Sanjay, Tjong Michael C, Zha Yining, Zapaishchykova Anna, Vajapeyam Sridhar, Hayat Hasaan, Chopra Rishi, Liu Kevin X, Nabavidazeh Ali, Resnick Adam, Mueller Sabine, Haas-Kogan Daphne, Aerts Hugo J W L, Poussaint Tina, Kann Benjamin H

机构信息

Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, MA.

Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA.

出版信息

medRxiv. 2023 Sep 18:2023.06.29.23292048. doi: 10.1101/2023.06.29.23292048.

Abstract

PURPOSE

Artificial intelligence (AI)-automated tumor delineation for pediatric gliomas would enable real-time volumetric evaluation to support diagnosis, treatment response assessment, and clinical decision-making. Auto-segmentation algorithms for pediatric tumors are rare, due to limited data availability, and algorithms have yet to demonstrate clinical translation.

METHODS

We leveraged two datasets from a national brain tumor consortium (n=184) and a pediatric cancer center (n=100) to develop, externally validate, and clinically benchmark deep learning neural networks for pediatric low-grade glioma (pLGG) segmentation using a novel in-domain, stepwise transfer learning approach. The best model [via Dice similarity coefficient (DSC)] was externally validated and subject to randomized, blinded evaluation by three expert clinicians wherein clinicians assessed clinical acceptability of expert- and AI-generated segmentations via 10-point Likert scales and Turing tests.

RESULTS

The best AI model utilized in-domain, stepwise transfer learning (median DSC: 0.877 [IQR 0.715-0.914]) versus baseline model (median DSC 0.812 [IQR 0.559-0.888]; <0.05). On external testing (n=60), the AI model yielded accuracy comparable to inter-expert agreement (median DSC: 0.834 [IQR 0.726-0.901] vs. 0.861 [IQR 0.795-0.905], =0.13). On clinical benchmarking (n=100 scans, 300 segmentations from 3 experts), the experts rated the AI model higher on average compared to other experts (median Likert rating: 9 [IQR 7-9]) vs. 7 [IQR 7-9], <0.05 for each). Additionally, the AI segmentations had significantly higher (<0.05) overall acceptability compared to experts on average (80.2% vs. 65.4%). Experts correctly predicted the origins of AI segmentations in an average of 26.0% of cases.

CONCLUSIONS

Stepwise transfer learning enabled expert-level, automated pediatric brain tumor auto-segmentation and volumetric measurement with a high level of clinical acceptability. This approach may enable development and translation of AI imaging segmentation algorithms in limited data scenarios.

摘要

目的

用于小儿胶质瘤的人工智能(AI)自动肿瘤轮廓描绘能够实现实时体积评估,以支持诊断、治疗反应评估和临床决策。由于数据可用性有限,小儿肿瘤的自动分割算法很少见,并且算法尚未证明其临床实用性。

方法

我们利用来自一个国家脑肿瘤联盟(n = 184)和一个儿科癌症中心(n = 100)的两个数据集,采用一种新颖的领域内逐步迁移学习方法,开发、外部验证并临床评估用于小儿低级别胶质瘤(pLGG)分割的深度学习神经网络。最佳模型[通过Dice相似系数(DSC)]进行了外部验证,并由三位专家临床医生进行随机、盲法评估,临床医生通过10分制李克特量表和图灵测试评估专家和AI生成的分割的临床可接受性。

结果

最佳AI模型采用领域内逐步迁移学习(中位数DSC:0.877 [四分位距0.715 - 0.914]),而基线模型为(中位数DSC 0.812 [四分位距0.559 - 0.888];<0.05)。在外部测试(n = 60)中,AI模型的准确率与专家间的一致性相当(中位数DSC:0.834 [四分位距0.726 - 0.901] 对 0.861 [四分位距0.795 - 0.905],P = 0.13)。在临床评估(n = 100次扫描,来自3位专家的300次分割)中,与其他专家相比,专家对AI模型的平均评分更高(中位数李克特评分:9 [四分位距7 - 9])对7 [四分位距7 - 9],每次比较P < 0.05)。此外,AI分割的总体可接受性平均显著高于专家(80.2% 对 65.4%)。专家在平均26.0%的病例中正确预测了AI分割的来源。

结论

逐步迁移学习实现了专家级的小儿脑肿瘤自动分割和体积测量,具有较高的临床可接受性。这种方法可能有助于在有限数据场景中开发和应用AI成像分割算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d65/10519109/6549e46bbb63/nihpp-2023.06.29.23292048v2-f0001.jpg

相似文献

1
Expert-level pediatric brain tumor segmentation in a limited data scenario with stepwise transfer learning.
medRxiv. 2023 Sep 18:2023.06.29.23292048. doi: 10.1101/2023.06.29.23292048.
7
Clinical Evaluation of Deep Learning for Tumor Delineation on F-FDG PET/CT of Head and Neck Cancer.
J Nucl Med. 2024 Feb 22;65(4):623-9. doi: 10.2967/jnumed.123.266574.
9
Layered deep learning for automatic mandibular segmentation in cone-beam computed tomography.
J Dent. 2021 Nov;114:103786. doi: 10.1016/j.jdent.2021.103786. Epub 2021 Aug 20.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验