Suppr超能文献

深度学习用于神经肿瘤患者CT和T1CE MRI上的脑室及脑室周围间隙自动分割

Deep Learning for Automated Ventricle and Periventricular Space Segmentation on CT and T1CE MRI in Neuro-Oncology Patients.

作者信息

Wubbels Mart, Ribeiro Marvin, Wolterink Jelmer M, van Elmpt Wouter, Compter Inge, Hofstede David, Birimac Nikolina E, Vaassen Femke, Palmgren Kati, Hansen Hendrik H G, Weide Hiska L van der, Brouwer Charlotte L, Kramer Miranda C A, Eekers Daniëlle B P, Zegers Catharina M L

机构信息

Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, 6229 ET Maastricht, The Netherlands.

Department of Radiology and Nuclear Medicine, Mental Health and Neuroscience Research Institute (MHeNs), Faculty of Health Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands.

出版信息

Cancers (Basel). 2025 May 8;17(10):1598. doi: 10.3390/cancers17101598.

Abstract

PURPOSE

This study aims to create a deep learning (DL) model capable of accurately delineating the ventricles, and by extension, the periventricular space (PVS), following the 2021 EPTN Neuro-Oncology Atlas guidelines on T1-weighted contrast-enhanced MRI scans (T1CE). The performance of this DL model was quantitatively and qualitatively compared with an off-the-shelf model.

MATERIALS AND METHODS

An nnU-Net was trained for ventricle segmentation using both CT and T1CE MRI images from 78 patients. Its performance was compared to that of a publicly available pretrained segmentation model, SynthSeg. The evaluation was conducted on both internal (N = 18) and external (n = 18) test sets, with each consisting of paired CT and T1CE MRI images and expert-delineated ground truths (GTs). Segmentation accuracy was assessed using the volumetric Dice Similarity Coefficient (DSC), 95th percentile Hausdorff distance (HD95), surface DSC, and added path length (APL). Additionally, a local evaluation of ventricle segmentations quantified differences between manual and automatic segmentations across both test sets. All segmentations were scored by radiotherapy technicians for clinical acceptability using a 4-point Likert scale.

RESULTS

The nnU-Net significantly outperformed the SynthSeg model on the internal test dataset in terms of median [range] DSC, 0.93 [0.86-0.95] vs. 0.85 [0.67-0.91], HD95, 0.9 [0.7-2.5] mm vs. 2.2 [1.7-4.8] mm, surface DSC, 0.97 [0.90-0.98] vs. 0.84 [0.70-0.89], and APL, 876 [407-1298] mm vs. 2809 [2311-3622] mm, all with < 0.001. No significant differences in these metrics were found in the external test set. However clinical ratings favored nnU-Net segmentations on the internal and external test sets. In addition, the nnU-Net had higher clinical ratings than the GT delineation on the internal and external test set.

CONCLUSIONS

The nnU-Net model outperformed the SynthSeg model on the internal dataset in both segmentation metrics and clinician ratings. While segmentation metrics showed no significant differences between the models on the external set, clinician ratings favored nnU-Net, suggesting enhanced clinical acceptability. This suggests that nnU-Net could contribute to more time-efficient and streamlined radiotherapy planning workflows.

摘要

目的

本研究旨在创建一种深度学习(DL)模型,该模型能够根据2021年EPTN神经肿瘤学图谱指南,在T1加权对比增强MRI扫描(T1CE)上准确勾勒出脑室,进而勾勒出脑室周围间隙(PVS)。将该DL模型的性能与现成模型进行了定量和定性比较。

材料与方法

使用78例患者的CT和T1CE MRI图像训练nnU-Net进行脑室分割。将其性能与公开可用的预训练分割模型SynthSeg进行比较。在内部(N = 18)和外部(n = 18)测试集上进行评估,每个测试集由配对的CT和T1CE MRI图像以及专家勾勒的地面真值(GTs)组成。使用体积骰子相似系数(DSC)、第95百分位数豪斯多夫距离(HD95)、表面DSC和增加路径长度(APL)评估分割准确性。此外,对脑室分割的局部评估量化了两个测试集上手动分割和自动分割之间的差异。所有分割均由放射治疗技术人员使用4点李克特量表对临床可接受性进行评分。

结果

在内部测试数据集上,nnU-Net在中位数[范围] DSC方面显著优于SynthSeg模型,分别为0.93 [0.86 - 0.95] 对0.85 [0.67 - 0.91],HD95分别为0.9 [0.7 - 2.5] 毫米对2.2 [1.7 - 4.8] 毫米,表面DSC分别为0.97 [0.90 - 0.98] 对0.84 [0.70 - 0.89],APL分别为876 [407 - 1298] 毫米对2809 [2311 - 3622] 毫米,所有差异均<0.001。在外部测试集中,这些指标未发现显著差异。然而,临床评分在内部和外部测试集上都更倾向于nnU-Net分割。此外,在内部和外部测试集上,nnU-Net的临床评分高于GT勾勒。

结论

nnU-Net模型在内部数据集的分割指标和临床医生评分方面均优于SynthSeg模型。虽然分割指标在外部数据集上显示模型之间无显著差异,但临床医生评分更倾向于nnU-Net,表明临床可接受性增强。这表明nnU-Net有助于提高放疗计划工作流程的效率和简化程度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39c7/12110295/0606be51d4d2/cancers-17-01598-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验