Zhao Changming, Tian Hao, Zou Zhigang, Xu Hu, Tong Shuk-Yin
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China.
Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China.
iScience. 2023 Jun 8;26(7):107037. doi: 10.1016/j.isci.2023.107037. eCollection 2023 Jul 21.
Current classifications of oxygen evolution catalysts are based on energy levels of the clean catalysts. It is generally asserted that a LOM-catalyst can only follow LOM chemistry in each electron transfer step and that there can be no mixing between AEM and LOM steps without an external trigger. We use theory to track the charge flow of the water-on-catalyst system and show that the position of water orbitals is pivotal in determining whether an electron transfer step is water dominated oxidation (WDO), lattice-oxygen dominated oxidation (LoDO), or metal dominated oxidation (MDO). Microscopic photo-catalytic pathways of TiO (110), a material whose lattice oxygen bands lie above the metal bands, show that viable OER pathways follow either all AEM steps or mixed AEM-LOM steps. The results provide a correct description of redox chemistries at the atomic level and advance our understanding of how water-splitting catalysts produce desorbed oxygen.
目前析氧催化剂的分类是基于清洁催化剂的能级。一般认为,在每个电子转移步骤中,晶格氧介导(LOM)催化剂只能遵循LOM化学原理,并且在没有外部触发的情况下,碱性水电解槽膜(AEM)和LOM步骤之间不会发生混合。我们用理论来追踪催化剂上水体系的电荷流动,并表明水轨道的位置对于确定电子转移步骤是水主导氧化(WDO)、晶格氧主导氧化(LoDO)还是金属主导氧化(MDO)至关重要。TiO(110)的晶格氧带位于金属带之上,其微观光催化途径表明,可行的析氧反应(OER)途径要么遵循所有AEM步骤,要么遵循混合的AEM-LOM步骤。这些结果在原子水平上对氧化还原化学进行了正确描述,并加深了我们对水分解催化剂如何产生解吸氧的理解。