Suppr超能文献

原发性胃肠道黑色素瘤患者癌症特异性生存的列线图预测模型的建立与验证及风险分层系统的构建

The Development and Validation of a Nomogram for Predicting Cancer-Specific Survival and a Risk Stratification System for Patients with Primary Gastrointestinal Melanoma.

机构信息

Nankai University Faculty of Medicine, Tianjin, China; Department of Gastroenterology and Hepatology, Tianjin Union Medical Center of Tianjin Medical University, Tianjin, China.

Department of Gastroenterology and Hepatology, Tianjin Union Medical Center of Tianjin Medical University, Tianjin, China.

出版信息

Turk J Gastroenterol. 2023 Aug;34(8):850-858. doi: 10.5152/tjg.2023.22711.

Abstract

BACKGROUND/AIMS: The aim of our study was to develop and validate a nomogram to predict cancer-specific survival and make a risk stratification system for primary gastrointestinal melanoma.

MATERIALS AND METHODS

Patients with primary gastrointestinal melanoma in the Surveillance, Epidemiology, and End Results database between 2000 and 2018 were included and randomly divided into the training and validation cohort (8:2). A prediction nomogram of cancer-specific survival was constructed based on the risk factors identified in the multivariate Cox regression. Calibration curve, time-dependent receiver operating characteristic, and decision curve analysis were performed. Further, a risk stratification system was developed based on the nomogram.

RESULTS

A total of 433 patients were included. The nomogram was constructed based on age, site, and tumor size, Surveillance, Epidemiology, and End Results (SEER) stage, and therapy. The area under the curves of the nomogram predicting 6-, 12-, and 18-month cancer-specific survival were 0.789, 0.757, and 0.726 for the internal validation and 0.796, 0.763, and 0.795 for the external validation. Calibration curves and decision curve analysis were performed. Further, patients were divided into 2 risk subgroups. The Kaplan-Meier analysis and the log-rank test showed that the risk stratification made well differentiation of patients with different risks of cancerspecific survival.

CONCLUSION

We developed and validated a practical prediction model of cancer-specific survival and a risk stratification system for patients with primary gastrointestinal melanoma, which might be available in clinical practices.

摘要

背景/目的:本研究旨在开发和验证一个列线图,以预测胃肠道原发性黑色素瘤的癌症特异性生存率,并建立一个风险分层系统。

材料和方法

纳入了 2000 年至 2018 年间监测、流行病学和最终结果(SEER)数据库中患有胃肠道原发性黑色素瘤的患者,并将其随机分为训练队列和验证队列(8:2)。基于多因素 Cox 回归确定的风险因素,构建了癌症特异性生存的预测列线图。进行了校准曲线、时间依赖性接受者操作特征曲线和决策曲线分析。此外,基于列线图开发了一个风险分层系统。

结果

共纳入 433 例患者。该列线图基于年龄、部位、肿瘤大小、SEER 分期和治疗构建。列线图预测 6、12 和 18 个月癌症特异性生存率的曲线下面积在内部验证中分别为 0.789、0.757 和 0.726,在外部验证中分别为 0.796、0.763 和 0.795。进行了校准曲线和决策曲线分析。此外,将患者分为 2 个风险亚组。Kaplan-Meier 分析和对数秩检验表明,风险分层可以很好地区分癌症特异性生存率不同风险的患者。

结论

我们开发和验证了一个用于胃肠道原发性黑色素瘤患者的癌症特异性生存率的实用预测模型和风险分层系统,这可能在临床实践中具有应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e157/10544115/bdd5df529b6c/tjg-34-8-850_f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验