State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
J Chem Phys. 2023 Jul 14;159(2). doi: 10.1063/5.0158918.
AgPd nanoalloys often undergo structural evolution during catalytic reactions; the mechanism underlying such restructuring remains largely unknown due to the use of oversimplified interatomic potentials in simulations. Herein, a deep-learning potential is developed for AgPd nanoalloys based on a multiscale dataset spanning from nanoclusters to bulk configurations, exhibits precise predictions of mechanical properties and formation energies with near-density functional theory accuracy, calculates the surface energies closer to experimental values compared to those obtained by Gupta potentials, and is applied to investigate the shape reconstruction of single-crystalline AgPd nanoalloys from cuboctahedron (Oh) to icosahedron (Ih) geometries. The Oh to Ih shape restructuring is thermodynamically favorable and occurs at 11 and 92 ps for Pd55@Ag254 and Ag147@Pd162 nanoalloys, respectively. During the shape reconstruction of Pd@Ag nanoalloys, concurrent surface restructuring of the (100) facet and internal multi-twinned phase change are observed with collaborative displacive characters. The presence of vacancies can influence the final product and reconstructing rate of Pd@Ag core-shell nanoalloys. The Ag outward diffusion on Ag@Pd nanoalloys is more pronounced in Ih geometry compared to Oh geometry and can be further accelerated by the Oh to Ih deformation. The deformation of single-crystalline Pd@Ag nanoalloys is characterized by a displacive transformation involving the collaborative displacement of a large number of atoms, distinguishing it from the diffusion-coupled transformation of Ag@Pd nanoalloys.
AgPd 纳米合金在催化反应中经常经历结构演变;由于模拟中使用过于简化的原子间势,这种重构的机制在很大程度上仍然未知。在此,基于跨越纳米团簇到体构型的多尺度数据集,为 AgPd 纳米合金开发了一种深度学习势,该势可以精确预测力学性能和形成能,接近密度泛函理论的精度,与 Gupta 势相比,计算出的表面能更接近实验值,并应用于研究从立方八面体 (Oh) 到二十面体 (Ih) 构型的单晶 AgPd 纳米合金的形状重构。Oh 到 Ih 的形状重构在热力学上是有利的,对于 Pd55@Ag254 和 Ag147@Pd162 纳米合金,分别在 11 和 92 ps 时发生。在 Pd@Ag 纳米合金的形状重构过程中,观察到 (100) 面的并发表面重构和内部多孪晶相变化,具有协同位错特征。空位的存在会影响 Pd@Ag 核壳纳米合金的最终产物和重构速率。与 Oh 几何形状相比,Ag 在 Ih 几何形状中的向外扩散在 Ag@Pd 纳米合金中更为明显,并且 Oh 到 Ih 的变形可以进一步加速其扩散。单晶 Pd@Ag 纳米合金的变形特征是涉及大量原子协同位移的位错转变,与 Ag@Pd 纳米合金的扩散耦合转变不同。