College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
Bioresour Technol. 2023 Oct;385:129466. doi: 10.1016/j.biortech.2023.129466. Epub 2023 Jul 8.
Generally, dark fermentation (DF) of hydrogen (H) synthesis has low H production from industrial-scale plants. In this study, campus greening wastes-ginkgo leaves were used to produce molten salt-modified biochar (MSBC) and nitrogen (N)-atmosphere BC (NBC) in molten salt and N environment at 800 °C, respectively. MSBC showed excellent properties including high specific surface area and electron transfer ability. After supplementation with MSBC, H yield rose by 32.4% compared to the control group without carbon material. Electrochemical analysis revealed MSBC improved the electrochemical properties of sludge. Furthermore, MSBC optimized the microbial community structure and increased the relative abundance of dominant microbes, thus promoting H production. This work provides a deep understanding of two carbons that play vital roles in increasing microbial biomass, supplementing trace element and favoring electron transfer in DF reactions. Salt recovery achieved 93.57% in molten salt carbonization, which has sustainability compared with N-atmosphere pyrolysis.
一般来说,从工业规模的工厂进行氢气(H)合成的暗发酵(DF)的 H 产量较低。在这项研究中,校园绿化废弃物-银杏叶分别在 800°C 的熔融盐和 N 环境中进行熔融盐改性生物炭(MSBC)和 N 气氛下生物炭(NBC)的制备。MSBC 表现出优异的性能,包括高比表面积和电子传递能力。与没有碳材料的对照组相比,补充 MSBC 后,H 的产量提高了 32.4%。电化学分析表明,MSBC 改善了污泥的电化学性能。此外,MSBC 优化了微生物群落结构,增加了优势微生物的相对丰度,从而促进了 H 的产生。这项工作深入了解了两种碳,它们在增加微生物生物量、补充微量元素和有利于 DF 反应中的电子传递方面发挥着重要作用。在熔融盐碳化中实现了 93.57%的盐回收,与 N 气氛热解相比具有可持续性。