Suppr超能文献

基于深度强化学习的任务空间分解物体搬运

Deep-Reinforcement-Learning-Based Object Transportation Using Task Space Decomposition.

机构信息

Department of Mechatronics Engineering, Tech University of Korea, 237 Sangidaehak-ro, Siheung-si 15073, Gyeonggi-do, Republic of Korea.

出版信息

Sensors (Basel). 2023 May 16;23(10):4807. doi: 10.3390/s23104807.

Abstract

This paper presents a novel object transportation method using deep reinforcement learning (DRL) and the task space decomposition (TSD) method. Most previous studies on DRL-based object transportation worked well only in the specific environment where a robot learned how to transport an object. Another drawback was that DRL only converged in relatively small environments. This is because the existing DRL-based object transportation methods are highly dependent on learning conditions and training environments; they cannot be applied to large and complicated environments. Therefore, we propose a new DRL-based object transportation that decomposes a difficult task space to be transported into simple multiple sub-task spaces using the TSD method. First, a robot sufficiently learned how to transport an object in a standard learning environment (SLE) that has small and symmetric structures. Then, a whole-task space was decomposed into several sub-task spaces by considering the size of the SLE, and we created sub-goals for each sub-task space. Finally, the robot transported an object by sequentially occupying the sub-goals. The proposed method can be extended to a large and complicated new environment as well as the training environment without additional learning or re-learning. Simulations in different environments are presented to verify the proposed method, such as a long corridor, polygons, and a maze.

摘要

本文提出了一种新的使用深度强化学习(DRL)和任务空间分解(TSD)方法的物体运输方法。基于 DRL 的物体运输的大多数先前研究仅在机器人学习如何运输物体的特定环境中表现良好。另一个缺点是 DRL 仅在相对较小的环境中收敛。这是因为现有的基于 DRL 的物体运输方法高度依赖于学习条件和训练环境;它们不能应用于大型和复杂的环境。因此,我们提出了一种新的基于 DRL 的物体运输方法,该方法使用 TSD 方法将困难的任务空间分解为简单的多个子任务空间。首先,机器人在具有小而对称结构的标准学习环境(SLE)中充分学习如何运输物体。然后,通过考虑 SLE 的大小将整个任务空间分解为几个子任务空间,并为每个子任务空间创建子目标。最后,机器人通过依次占据子目标来运输物体。所提出的方法可以扩展到大型和复杂的新环境以及无需额外学习或重新学习的训练环境。在不同的环境中进行了模拟以验证所提出的方法,例如长走廊、多边形和迷宫。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3e7/10223963/fba4518a573f/sensors-23-04807-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验