Suppr超能文献

基于传感器融合的车辆检测与跟踪:在十字路口使用单个摄像机和雷达。

Sensor Fusion-Based Vehicle Detection and Tracking Using a Single Camera and Radar at a Traffic Intersection.

机构信息

Department of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA.

出版信息

Sensors (Basel). 2023 May 19;23(10):4888. doi: 10.3390/s23104888.

Abstract

Recent advancements in sensor technologies, in conjunction with signal processing and machine learning, have enabled real-time traffic control systems to adapt to varying traffic conditions. This paper introduces a new sensor fusion approach that combines data from a single camera and radar to achieve cost-effective and efficient vehicle detection and tracking. Initially, vehicles are independently detected and classified using the camera and radar. Then, the constant-velocity model within a Kalman filter is employed to predict vehicle locations, while the Hungarian algorithm is used to associate these predictions with sensor measurements. Finally, vehicle tracking is accomplished by merging kinematic information from predictions and measurements through the Kalman filter. A case study conducted at an intersection demonstrates the effectiveness of the proposed sensor fusion method for traffic detection and tracking, including performance comparisons with individual sensors.

摘要

近年来,传感器技术的进步,结合信号处理和机器学习,使得实时交通控制系统能够适应不断变化的交通状况。本文介绍了一种新的传感器融合方法,该方法结合了来自单个摄像机和雷达的数据,以实现经济高效和有效的车辆检测和跟踪。首先,使用摄像机和雷达独立地检测和分类车辆。然后,在卡尔曼滤波器中使用恒速模型来预测车辆位置,同时使用匈牙利算法将这些预测与传感器测量值关联起来。最后,通过卡尔曼滤波器合并来自预测和测量值的运动学信息来完成车辆跟踪。在交叉口进行的案例研究证明了所提出的传感器融合方法在交通检测和跟踪方面的有效性,包括与单个传感器的性能比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4284/10222169/6a2b680667af/sensors-23-04888-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验