Schrader Maxwell, Hainen Alexander, Bittle Joshua
Department of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA.
Sensors (Basel). 2024 Jul 17;24(14):4640. doi: 10.3390/s24144640.
This work presents a methodology for extracting vehicle trajectories from six partially-overlapping roadside radars through a signalized corridor. The methodology incorporates radar calibration, transformation to the Frenet space, Kalman filtering, short-term prediction, lane-classification, trajectory association, and a covariance intersection-based approach to track fusion. The resulting dataset contains 79,000 fused radar trajectories over a 26-h period, capturing diverse driving scenarios including signalized intersections, merging behavior, and a wide range of speeds. Compared to popular trajectory datasets such as NGSIM and highD, this dataset offers extended temporal coverage, a large number of vehicles, and varied driving conditions. The filtered leader-follower pairs from the dataset provide a substantial number of trajectories suitable for car-following model calibration. The framework and dataset presented in this work has the potential to be leveraged broadly in the study of advanced traffic management systems, autonomous vehicle decision-making, and traffic research.
这项工作提出了一种通过信号控制走廊从六个部分重叠的路边雷达中提取车辆轨迹的方法。该方法包括雷达校准、转换到 frenet 空间、卡尔曼滤波、短期预测、车道分类、轨迹关联以及基于协方差交集的跟踪融合方法。所得数据集包含在 26 小时内的 79000 条融合雷达轨迹,捕捉了包括信号交叉口、合并行为和各种速度在内的不同驾驶场景。与 NGSIM 和 highD 等流行轨迹数据集相比,该数据集提供了更长的时间覆盖范围、大量车辆和多样的驾驶条件。从数据集中过滤出的前后跟随车辆对提供了大量适合跟驰模型校准的轨迹。这项工作中提出的框架和数据集有潜力在先进交通管理系统、自动驾驶车辆决策和交通研究中得到广泛应用。