Suppr超能文献

WM-STGCN:一种用于帕金森步态识别的新型时空建模方法。

WM-STGCN: A Novel Spatiotemporal Modeling Method for Parkinsonian Gait Recognition.

机构信息

Department of Computer Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.

Hippo T&C Inc., Suwon 16419, Republic of Korea.

出版信息

Sensors (Basel). 2023 May 22;23(10):4980. doi: 10.3390/s23104980.

Abstract

Parkinson's disease (PD) is a neurodegenerative disorder that causes gait abnormalities. Early and accurate recognition of PD gait is crucial for effective treatment. Recently, deep learning techniques have shown promising results in PD gait analysis. However, most existing methods focus on severity estimation and frozen gait detection, while the recognition of Parkinsonian gait and normal gait from the forward video has not been reported. In this paper, we propose a novel spatiotemporal modeling method for PD gait recognition, named WM-STGCN, which utilizes a Weighted adjacency matrix with virtual connection and Multi-scale temporal convolution in a Spatiotemporal Graph Convolution Network. The weighted matrix enables different intensities to be assigned to different spatial features, including virtual connections, while the multi-scale temporal convolution helps to effectively capture the temporal features at different scales. Moreover, we employ various approaches to augment skeleton data. Experimental results show that our proposed method achieved the best accuracy of 87.1% and an F1 score of 92.85%, outperforming Long short-term memory (LSTM), K-nearest neighbors (KNN), Decision tree, AdaBoost, and ST-GCN models. Our proposed WM-STGCN provides an effective spatiotemporal modeling method for PD gait recognition that outperforms existing methods. It has the potential for clinical application in PD diagnosis and treatment.

摘要

帕金森病(PD)是一种神经退行性疾病,会导致步态异常。早期准确识别 PD 步态对于有效治疗至关重要。最近,深度学习技术在 PD 步态分析中显示出了有前途的结果。然而,大多数现有的方法都集中在严重程度估计和冻结步态检测上,而从正向视频中识别帕金森步态和正常步态尚未得到报道。在本文中,我们提出了一种新的帕金森步态识别的时空建模方法,称为 WM-STGCN,它利用带有虚拟连接的加权邻接矩阵和时空图卷积网络中的多尺度时间卷积。加权矩阵可以为不同的空间特征(包括虚拟连接)分配不同的强度,而多尺度时间卷积有助于有效地捕捉不同尺度的时间特征。此外,我们采用了多种方法来扩充骨骼数据。实验结果表明,我们提出的方法的准确率最高,达到了 87.1%,F1 分数为 92.85%,优于长短期记忆(LSTM)、K 最近邻(KNN)、决策树、AdaBoost 和 ST-GCN 模型。我们提出的 WM-STGCN 为 PD 步态识别提供了一种有效的时空建模方法,优于现有方法。它具有在 PD 诊断和治疗中临床应用的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d43c/10223022/4fa041070544/sensors-23-04980-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验