Department of Electrical Engineering (ESAT), eMedia Research Lab/STADIUS, KU Leuven, Andreas Vesaliusstraat 13, 3000, Leuven, Belgium.
Department of Mechanical Engineering, Intelligent Mobile Platforms Research Group, KU Leuven, Andreas Vesaliusstraat 13, 3000, Leuven, Belgium.
J Neuroeng Rehabil. 2022 May 21;19(1):48. doi: 10.1186/s12984-022-01025-3.
Freezing of gait (FOG) is a common and debilitating gait impairment in Parkinson's disease. Further insight into this phenomenon is hampered by the difficulty to objectively assess FOG. To meet this clinical need, this paper proposes an automated motion-capture-based FOG assessment method driven by a novel deep neural network.
Automated FOG assessment can be formulated as an action segmentation problem, where temporal models are tasked to recognize and temporally localize the FOG segments in untrimmed motion capture trials. This paper takes a closer look at the performance of state-of-the-art action segmentation models when tasked to automatically assess FOG. Furthermore, a novel deep neural network architecture is proposed that aims to better capture the spatial and temporal dependencies than the state-of-the-art baselines. The proposed network, termed multi-stage spatial-temporal graph convolutional network (MS-GCN), combines the spatial-temporal graph convolutional network (ST-GCN) and the multi-stage temporal convolutional network (MS-TCN). The ST-GCN captures the hierarchical spatial-temporal motion among the joints inherent to motion capture, while the multi-stage component reduces over-segmentation errors by refining the predictions over multiple stages. The proposed model was validated on a dataset of fourteen freezers, fourteen non-freezers, and fourteen healthy control subjects.
The experiments indicate that the proposed model outperforms four state-of-the-art baselines. Moreover, FOG outcomes derived from MS-GCN predictions had an excellent (r = 0.93 [0.87, 0.97]) and moderately strong (r = 0.75 [0.55, 0.87]) linear relationship with FOG outcomes derived from manual annotations.
The proposed MS-GCN may provide an automated and objective alternative to labor-intensive clinician-based FOG assessment. Future work is now possible that aims to assess the generalization of MS-GCN to a larger and more varied verification cohort.
冻结步态(FOG)是帕金森病中一种常见且使人虚弱的步态障碍。由于难以客观评估 FOG,因此进一步深入了解这一现象受到了阻碍。为了满足这一临床需求,本文提出了一种基于新型深度神经网络的自动化运动捕捉 FOG 评估方法。
自动化 FOG 评估可以被构造成一个动作分割问题,其中时间模型的任务是识别并在未修剪的运动捕捉试验中对 FOG 段进行时间定位。本文更深入地研究了最先进的动作分割模型在自动评估 FOG 时的性能。此外,提出了一种新的深度神经网络架构,旨在比最先进的基线更好地捕捉空间和时间依赖性。所提出的网络,称为多阶段时空图卷积网络(MS-GCN),结合了时空图卷积网络(ST-GCN)和多阶段时间卷积网络(MS-TCN)。ST-GCN 捕获了运动捕捉中关节固有的分层时空运动,而多阶段组件通过在多个阶段上细化预测来减少过分割错误。该模型在包含 14 名冻结者、14 名非冻结者和 14 名健康对照者的数据集上进行了验证。
实验表明,所提出的模型优于四个最先进的基线。此外,从 MS-GCN 预测中得出的 FOG 结果与从手动注释中得出的 FOG 结果具有极好的(r = 0.93 [0.87, 0.97])和中等强度的(r = 0.75 [0.55, 0.87])线性关系。
所提出的 MS-GCN 可能为基于劳动力密集型临床医生的 FOG 评估提供一种自动化和客观的替代方法。现在可以进行进一步的工作,旨在评估 MS-GCN 在更大和更多样化的验证队列中的泛化能力。