Faculdade de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio de Janeiro, RJ, 21941-902, Brazil.
Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Brazil.
Phys Chem Chem Phys. 2023 Jul 19;25(28):19182-19194. doi: 10.1039/d3cp02261g.
The misfolding and aggregation of the presynaptic protein α-synuclein (α-syn) is a pathological hallmark of Parkinson's disease (PD). Targeting α-syn has emerged as a promising therapeutic strategy for PD. Emerging evidence supports a dual action of epigallocatechin-3-gallate (EGCG) against amyloid neurotoxicity. EGCG can halt the formation of toxic aggregates by redirecting the amyloid fibril aggregation pathway toward non-toxic aggregates and remodeling the existing toxic fibrils into non-toxic aggregates. Moreover, EGCG oxidation can enhance fibril's remodeling by forming Schiff bases, leading to crosslinking of the fibril. However, this covalent modification is not required for amyloid remodeling, and establishing non-specific hydrophobic interactions with sidechains seems to be the main driver of amyloid remodeling by EGCG. Thioflavin (ThT) is a gold standard probe to detect amyloid fibrils , and oxidized EGCG competes with ThT for amyloid fibrils' binding sites. In this work, we performed docking and molecular dynamics (MD) simulations to gain insights into the intermolecular interactions of oxidized EGCG and ThT with a mature α-syn fibril. We find that oxidized EGCG moves within lysine-rich sites within the hydrophobic core of the α-syn fibril, forming aromatic and hydrogen-bonding (H-bond) interactions with different residues during the whole MD simulation time. In contrast, ThT, which does not remodel amyloid fibrils, was docked to the same sites but only aromatic interactions. Our findings suggest that non-covalent interactions play a role in oxidized EGCG binding into the hydrophobic core, including H-bond and aromatic interactions with some residues in the amyloid remodeling processes. These interactions would ultimately lead to a disturbance of structural features as determinants for stabilizing this fibril into a compact and pathogenic Greek key topology.
错误折叠和聚集的突触前蛋白α-突触核蛋白(α-突触核蛋白)是帕金森病(PD)的病理标志。针对α-突触核蛋白已成为 PD 的一种有前途的治疗策略。新出现的证据支持表没食子儿茶素没食子酸酯(EGCG)对淀粉样神经毒性的双重作用。EGCG 可以通过将淀粉样纤维聚集途径重定向到无毒聚集物并将现有毒性纤维重塑成无毒聚集物来阻止有毒聚集物的形成。此外,EGCG 氧化可以通过形成席夫碱来增强纤维的重塑,导致纤维的交联。然而,这种共价修饰对于淀粉样重塑不是必需的,并且与侧链建立非特异性疏水性相互作用似乎是 EGCG 淀粉样重塑的主要驱动力。硫黄素(ThT)是检测淀粉样纤维的金标准探针,氧化 EGCG 与 ThT 竞争淀粉样纤维的结合位点。在这项工作中,我们进行了对接和分子动力学(MD)模拟,以深入了解氧化 EGCG 和 ThT 与成熟的α-突触核蛋白纤维之间的分子间相互作用。我们发现氧化 EGCG 在α-突触核蛋白纤维的疏水区内的赖氨酸丰富位点移动,在整个 MD 模拟过程中与不同的残基形成芳香族和氢键(H-bond)相互作用。相比之下,不重塑淀粉样纤维的 ThT 被对接在相同的位置,但只有芳香族相互作用。我们的研究结果表明,非共价相互作用在氧化 EGCG 结合到疏水区中起作用,包括与淀粉样重塑过程中一些残基的氢键和芳香族相互作用。这些相互作用最终会导致结构特征的干扰,作为稳定这种纤维成为紧凑和致病希腊钥匙拓扑结构的决定因素。