Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medicine Göttingen, Waldweg 33, 37073 Göttingen, Germany.
Redox Biol. 2019 Apr;22:101135. doi: 10.1016/j.redox.2019.101135. Epub 2019 Feb 5.
The aggregation of α-synuclein (α-syn) into amyloid fibrils is a major pathological hallmark of Parkinson's disease (PD) and other synucleinopathies. The mechanisms underlying the structural transition of soluble and innocuous α-syn to aggregated neurotoxic forms remains largely unknown. The disordered nature of α-syn has hampered the use of structure-based protein engineering approaches to elucidate the molecular determinants of this transition. The recent 3D structure of a pathogenic α-syn fibril provides a template for this kind of studies. The structure supports the NAC domain being a critical element in fibril formation, since it constitutes the core of the fibril, delineating a Greek-key motif. Here, we stapled the ends of this motif with a designed disulfide bond and evaluated its impact on the conformation, aggregation and toxicity of α-syn in different environments. The new covalent link biases the native structural ensemble of α-syn toward compact conformations, reducing the population of fully unfolded species. This conformational bias results in a strongly reduced fibril formation propensity both in the absence and in the presence of lipids and impedes the formation of neurotoxic oligomers. Our study does not support the Greek-key motif being already imprinted in early α-syn assemblies, discarding it as a druggable interface to prevent the initiation of fibrillation. In contrast, it suggests the stabilization of native, compact ensembles as a potential therapeutic strategy to avoid the formation of toxic species and to target the early stages of PD.
α-突触核蛋白(α-syn)的聚集是帕金森病(PD)和其他突触核蛋白病的主要病理标志。可溶性和无害的α-syn 向聚集性神经毒性形式的结构转变的机制在很大程度上仍然未知。α-syn 的无序性质阻碍了基于结构的蛋白质工程方法的使用,无法阐明这种转变的分子决定因素。最近致病性α-syn 纤维的 3D 结构为这类研究提供了模板。该结构支持 NAC 结构域是纤维形成的关键要素,因为它构成纤维的核心,描绘了希腊钥匙图案。在这里,我们用设计的二硫键将该图案的末端连接起来,并评估其对不同环境中α-syn 的构象、聚集和毒性的影响。新的共价键使 α-syn 的天然结构集合偏向于紧凑构象,减少完全展开物种的数量。这种构象偏差导致在没有和存在脂质的情况下,纤维形成倾向大大降低,并且阻止了神经毒性低聚物的形成。我们的研究不支持希腊钥匙图案已经在早期α-syn 组装中被印上,因此将其排除为防止纤维起始的可药用界面。相比之下,它表明稳定天然的、紧凑的集合体是一种潜在的治疗策略,可以避免形成毒性物种,并针对 PD 的早期阶段。