Suppr超能文献

下肢外骨骼对神经活动调节和步态分类的影响。

Effect of Lower Limb Exoskeleton on the Modulation of Neural Activity and Gait Classification.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2023;31:2988-3003. doi: 10.1109/TNSRE.2023.3294435. Epub 2023 Jul 28.

Abstract

Neurorehabilitation with robotic devices requires a paradigm shift to enhance human-robot interaction. The coupling of robot assisted gait training (RAGT) with a brain-machine interface (BMI) represents an important step in this direction but requires better elucidation of the effect of RAGT on the user's neural modulation. Here, we investigated how different exoskeleton walking modes modify brain and muscular activity during exoskeleton assisted gait. We recorded electroencephalographic (EEG) and electromyographic (EMG) activity from ten healthy volunteers walking with an exoskeleton with three modes of user assistance (i.e., transparent, adaptive and full assistance) and during free overground gait. Results identified that exoskeleton walking (irrespective of the exoskeleton mode) induces a stronger modulation of central mid-line mu (8-13 Hz) and low-beta (14-20 Hz) rhythms compared to free overground walking. These modifications are accompanied by a significant re-organization of the EMG patterns in exoskeleton walking. On the other hand, we observed no significant differences in neural activity during exoskeleton walking with the different assistance levels. We subsequently implemented four gait classifiers based on deep neural networks trained on the EEG data during the different walking conditions. Our hypothesis was that exoskeleton modes could impact the creation of a BMI-driven RAGT. We demonstrated that all classifiers achieved an average accuracy of 84.13±3.49% in classifying swing and stance phases on their respective datasets. In addition, we demonstrated that the classifier trained on the transparent mode exoskeleton data can classify gait phases during adaptive and full modes with an accuracy of 78.3±4.8% , while the classifier trained on free overground walking data fails to classify the gait during exoskeleton walking (accuracy of 59.4±11.8% ). These findings provide important insights into the effect of robotic training on neural activity and contribute to the advancement of BMI technology for improving robotic gait rehabilitation therapy.

摘要

神经康复与机器人设备需要范式转变,以增强人机交互。机器人辅助步态训练 (RAGT) 与脑机接口 (BMI) 的结合代表了朝这个方向迈出的重要一步,但需要更好地阐明 RAGT 对用户神经调节的影响。在这里,我们研究了不同的外骨骼行走模式如何改变外骨骼辅助行走过程中大脑和肌肉的活动。我们记录了十个健康志愿者在使用三种用户辅助模式(即透明、自适应和完全辅助)的外骨骼和自由地面行走时的脑电图 (EEG) 和肌电图 (EMG) 活动。结果表明,与自由地面行走相比,外骨骼行走(无论外骨骼模式如何)都会引起中央中线 mu (8-13 Hz) 和低β (14-20 Hz) 节律更强的调制。这些变化伴随着外骨骼行走中肌电模式的显著重新组织。另一方面,我们观察到在不同辅助水平的外骨骼行走中,神经活动没有显著差异。随后,我们基于在不同行走条件下 EEG 数据训练的深度神经网络,实现了四个步态分类器。我们的假设是外骨骼模式可能会影响 BMI 驱动的 RAGT 的创建。我们证明,所有分类器在各自的数据集上分类摆动和站立阶段的平均准确率为 84.13±3.49%。此外,我们证明,在透明模式外骨骼数据上训练的分类器可以以 78.3±4.8%的准确率分类自适应和完全模式下的步态阶段,而在自由地面行走数据上训练的分类器无法分类外骨骼行走时的步态(准确率为 59.4±11.8%)。这些发现为机器人训练对神经活动的影响提供了重要的见解,并为改善 BMI 技术在机器人步态康复治疗中的应用做出了贡献。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验