Edwards Patrick J, Stuart Sean, Farmer James T, Shi Ran, Long Run, Prezhdo Oleg V, Kresin Vitaly V
Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0484, United States.
Physical Sciences Laboratories, The Aerospace Corporation, 355 S. Douglas St., El Segundo, California 90245, United States.
J Phys Chem Lett. 2023 Jul 20;14(28):6414-6421. doi: 10.1021/acs.jpclett.3c01542. Epub 2023 Jul 11.
Nanostructured electronic devices, such as those based on graphene, are typically grown on top of the insulator SiO. Their exposure to a flux of small size-selected silver nanoparticles has revealed remarkably selective adhesion: the graphene channel can be made fully metallized, while the insulating substrate remains coverage-free. This conspicuous contrast derives from the low binding energy between the metal nanoparticles and a contaminant-free passivated silica surface. In addition to providing physical insight into nanoparticle adhesion, this effect may be of value in applications involving deposition of metallic layers on device working surfaces: it eliminates the need for masking the insulating region and the associated extensive and potentially deleterious pre- and postprocessing.
纳米结构电子器件,比如那些基于石墨烯的器件,通常生长在绝缘体SiO之上。它们暴露于小尺寸选择的银纳米颗粒流中时,展现出了显著的选择性粘附:石墨烯通道可以被完全金属化,而绝缘衬底仍无覆盖物。这种明显的对比源于金属纳米颗粒与无污染的钝化二氧化硅表面之间的低结合能。除了提供对纳米颗粒粘附的物理见解之外,这种效应在涉及在器件工作表面沉积金属层的应用中可能具有价值:它消除了对绝缘区域进行掩膜以及相关的广泛且可能有害的预处理和后处理的需求。