Suppr超能文献

生物图像目标分析的二十问

The Twenty Questions of bioimage object analysis.

机构信息

Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Center for Quantitative Cell Imaging, University of Wisconsin-Madison and Morgridge Institute for Research, Madison, WI, USA.

出版信息

Nat Methods. 2023 Jul;20(7):976-978. doi: 10.1038/s41592-023-01919-7.

Abstract

The language used by microscopists who wish to find and measure objects in an image often differs in critical ways from that used by computer scientists who create tools to help them do this, making communication hard across disciplines. This work proposes a set of standardized questions that can guide analyses and shows how it can improve the future of bioimage analysis as a whole by making image analysis workflows and tools more FAIR (findable, accessible, interoperable and reusable).

摘要

希望在图像中找到和测量目标的显微镜使用者所使用的语言,往往与帮助他们实现这一目标的计算机科学家所使用的语言在关键方面存在差异,从而使得跨学科交流变得困难。这项工作提出了一组标准化的问题,可以指导分析,并展示了通过使图像分析工作流程和工具更加 FAIR(可查找、可访问、可互操作和可重复使用),它如何整体上改善生物图像分析的未来。

相似文献

1
The Twenty Questions of bioimage object analysis.
Nat Methods. 2023 Jul;20(7):976-978. doi: 10.1038/s41592-023-01919-7.
2
From pixels to insights: Machine learning and deep learning for bioimage analysis.
Bioessays. 2024 Feb;46(2):e2300114. doi: 10.1002/bies.202300114. Epub 2023 Dec 6.
3
Chapter 17: bioimage informatics for systems pharmacology.
PLoS Comput Biol. 2013 Apr;9(4):e1003043. doi: 10.1371/journal.pcbi.1003043. Epub 2013 Apr 25.
4
The BioImage Archive - Building a Home for Life-Sciences Microscopy Data.
J Mol Biol. 2022 Jun 15;434(11):167505. doi: 10.1016/j.jmb.2022.167505. Epub 2022 Feb 18.
5
Bioimage analysis workflows: community resources to navigate through a complex ecosystem.
F1000Res. 2021 Apr 26;10:320. doi: 10.12688/f1000research.52569.1. eCollection 2021.
6
Meeting in the Middle: Towards Successful Multidisciplinary Bioimage Analysis Collaboration.
Front Bioinform. 2022 Apr;2. doi: 10.3389/fbinf.2022.889755. Epub 2022 Apr 14.
8
The NEUBIAS Gateway: a hub for bioimage analysis methods and materials.
F1000Res. 2020 Jun 16;9:613. doi: 10.12688/f1000research.24759.1. eCollection 2020.
9
10
Developing open-source software for bioimage analysis: opportunities and challenges.
F1000Res. 2021 Apr 19;10:302. doi: 10.12688/f1000research.52531.1. eCollection 2021.

引用本文的文献

1
F-BIAS: Towards a distributed national core facility for bioimage analysis.
PLoS Comput Biol. 2025 Jun 10;21(6):e1013058. doi: 10.1371/journal.pcbi.1013058. eCollection 2025 Jun.
2
BiaPy: accessible deep learning on bioimages.
Nat Methods. 2025 Apr 29. doi: 10.1038/s41592-025-02699-y.

本文引用的文献

1
Introducing the FAIR Principles for research software.
Sci Data. 2022 Oct 14;9(1):622. doi: 10.1038/s41597-022-01710-x.
2
A Hitchhiker's guide through the bio-image analysis software universe.
FEBS Lett. 2022 Oct;596(19):2472-2485. doi: 10.1002/1873-3468.14451. Epub 2022 Jul 29.
4
REMBI: Recommended Metadata for Biological Images-enabling reuse of microscopy data in biology.
Nat Methods. 2021 Dec;18(12):1418-1422. doi: 10.1038/s41592-021-01166-8.
5
Scientific Community Image Forum: A discussion forum for scientific image software.
PLoS Biol. 2019 Jun 19;17(6):e3000340. doi: 10.1371/journal.pbio.3000340. eCollection 2019 Jun.
6
An objective comparison of cell-tracking algorithms.
Nat Methods. 2017 Dec;14(12):1141-1152. doi: 10.1038/nmeth.4473. Epub 2017 Oct 30.
7
The cellular microscopy phenotype ontology.
J Biomed Semantics. 2016 May 18;7:28. doi: 10.1186/s13326-016-0074-0. eCollection 2016.
8
The FAIR Guiding Principles for scientific data management and stewardship.
Sci Data. 2016 Mar 15;3:160018. doi: 10.1038/sdata.2016.18.
9
The ImageJ ecosystem: An open platform for biomedical image analysis.
Mol Reprod Dev. 2015 Jul-Aug;82(7-8):518-29. doi: 10.1002/mrd.22489. Epub 2015 Jul 7.
10
Fiji: an open-source platform for biological-image analysis.
Nat Methods. 2012 Jun 28;9(7):676-82. doi: 10.1038/nmeth.2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验