Abbas Ahmad M, Elkhatib Walid F, Aboulwafa Mohammad M, Hassouna Nadia A, Aboshanab Khaled M
Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, African Union Organization St. Abbassia, Cairo, 11566, Egypt.
Department of Microbiology & Immunology, Faculty of Pharmacy, King Salman International University, South Sinai, Egypt.
AMB Express. 2023 Jul 12;13(1):73. doi: 10.1186/s13568-023-01574-3.
Vitamin D is a fat-soluble prohormone that is activated inside the liver to produce 25-hydroxyvitamin D (calcidiol), and in the kidney to produce the fully active 1α, 25-dihydroxy vitamin D (calcitriol). A previous work piloted in our laboratory, resulted in a successful recovery of a local soil-promising Actinomyces hyovaginalis isolate CCASU-A11-2 capable of converting vitamin D into calcitriol. Despite the rising amount of research on vitamin D bioconversion into calcitriol, further deliberate studies on this topic can significantly contribute to the improvement of such a bioconversion process. Therefore, this work aimed to improve the bioconversion process, using the study isolate, in a 14 L laboratory fermenter (4 L fermentation medium composed of fructose (15 g/L), defatted soybean (15 g/L), NaCl (5 g/L), CaCO 2 g/L); KHPO, (1 g/L) NaF (0.5 g/L) and initial of pH 7.8) where different experiments were undertaken to investigate the effect of different culture conditions on the bioconversion process. Using the 14 L laboratory fermenter, the calcitriol production was increased by about 2.5-fold (32.8 µg/100 mL) to that obtained in the shake flask (12.4 µg/100 mL). The optimal bioconversion conditions were inoculum size of 2% v/v, agitation rate of 200 rpm, aeration rate of 1 vvm, initial pH of 7.8 (uncontrolled); addition of vitamin D (substrate) 48 h after the start of the main culture. In conclusion, the bioconversion of vitamin D into calcitriol in a laboratory fermenter showed a 2.5-fold increase as compared to the shake flask level where, the important factors influencing the bioconversion process were the aeration rate, inoculum size, the timing of substrate addition, and the fixed pH of the fermentation medium. So, those factors should be critically considered for the scaling-up of the biotransformation process.
维生素D是一种脂溶性前体激素,在肝脏内被激活生成25-羟基维生素D(骨化二醇),在肾脏内被激活生成完全活性的1α,25-二羟基维生素D(骨化三醇)。我们实验室之前开展的一项工作成功分离出了一种有前景的本地土壤放线菌——阴道放线菌CCASU-A11-2,它能够将维生素D转化为骨化三醇。尽管关于维生素D生物转化为骨化三醇的研究数量不断增加,但对该主题进行更深入的研究能够显著促进这种生物转化过程的改进。因此,本研究旨在使用分离菌株在14升实验室发酵罐(4升发酵培养基,由果糖(15克/升)、脱脂大豆(15克/升)、氯化钠(5克/升)、碳酸钙2克/升、磷酸氢二钾(1克/升)、氟化钠(0.5克/升)组成,初始pH值为7.8)中改进生物转化过程,通过进行不同实验来研究不同培养条件对生物转化过程的影响。使用14升实验室发酵罐,骨化三醇的产量比摇瓶培养(12.4微克/100毫升)提高了约2.5倍(32.8微克/100毫升)。最佳生物转化条件为接种量2% v/v、搅拌速度200转/分钟、通气量1 vvm、初始pH值7.8(不控制);在主培养开始48小时后添加维生素D(底物)。总之,在实验室发酵罐中维生素D生物转化为骨化三醇的产量比摇瓶培养提高了2.5倍,影响生物转化过程的重要因素包括通气量、接种量、底物添加时间和发酵培养基的固定pH值。因此,在扩大生物转化过程规模时应严格考虑这些因素。