Suppr超能文献

通过分子动力学模拟探究高传染性突变 alpha 变体与 SARS-CoV-2 RBD 上的 ACE2 的结合性质和稳定性。

Probing the binding nature and stability of highly transmissible mutated variant alpha to omicron of SARS-CoV-2 RBD with ACE2 via molecular dynamics simulation.

机构信息

Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem, India.

出版信息

J Cell Biochem. 2023 Aug;124(8):1115-1134. doi: 10.1002/jcb.30432. Epub 2023 Jul 12.

Abstract

Currently, no approved drug is available as a causative agent of coronavirus disease 2019 (COVID-19) except for some repurposed drugs. The first structure of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was reported in late 2019, based on that some vaccines and repurposed drugs were approved to prevent people from COVID-19 during the pandemic situation. Since then, new types of variants emerged and notably, the receptor binding domain (RBD) adopted different binding modes with angiotensin-converting enzyme 2 (ACE2); this made significant changes in the progression of COVID-19. Some of the new variants are highly infectious spreading fast and dangerous. The present study is focused on understanding the binding mode of the RBD of different mutated SARS-CoV-2 variants of concern (alpha to omicron) with the human ACE2 using molecular dynamics simulation. Notably, some variants adopted a new binding mode of RBD with ACE2 and formed different interactions, which is unlike the wild type; this was confirmed from the comparison of interaction between RBD-ACE2 of all variants with its wild-type structure. Binding energy values confirm that some mutated variants exhibit high binding affinity. These findings demonstrate that the variations in the sequence of SARS-CoV-2 S-protein altered the binding mode of RBD; this may be the reason that the virus has high transmissibility and causes new infections. This in-silico study on mutated variants of SARS-CoV-2 RBD with ACE2 insights into their binding mode, binding affinity, and stability. This information may help to understand the RBD-ACE2 binding domains, which allows for designing newer drugs and vaccines.

摘要

目前,除了一些重新利用的药物外,没有针对 2019 年冠状病毒病 (COVID-19) 的批准药物。2019 年末报告了严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 的第一个结构,此后一些疫苗和重新利用的药物被批准用于在大流行期间预防人们感染 COVID-19。从那时起,新的变异类型出现了,值得注意的是,受体结合域 (RBD) 采用了与血管紧张素转换酶 2 (ACE2) 不同的结合模式;这使得 COVID-19 的进展发生了重大变化。一些新的变体具有高度传染性,传播速度快且危险。本研究专注于使用分子动力学模拟了解不同突变的 SARS-CoV-2 变体(阿尔法到奥密克戎)的 RBD 与人类 ACE2 的结合模式。值得注意的是,一些变体采用了 RBD 与 ACE2 的新结合模式并形成了不同的相互作用,这与野生型不同;这从所有变体的 RBD-ACE2 与野生型结构的相互作用比较中得到了证实。结合能值证实,一些突变变体表现出高结合亲和力。这些发现表明,SARS-CoV-2 S 蛋白序列的变异改变了 RBD 的结合模式;这可能是病毒具有高传染性并导致新感染的原因。本研究通过对 SARS-CoV-2 RBD 与 ACE2 的突变变体进行计算机模拟,深入了解它们的结合模式、结合亲和力和稳定性。这些信息可能有助于了解 RBD-ACE2 结合域,从而设计出更新的药物和疫苗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验