Suppr超能文献

基于原位电场激活掺杂实现的平面 p-n 结汞碲化物胶体量子点焦平面阵列

Mercury telluride colloidal quantum-dot focal plane array with planar p-n junctions enabled by in situ electric field-activated doping.

机构信息

School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China.

Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China.

出版信息

Sci Adv. 2023 Jul 14;9(28):eadg7827. doi: 10.1126/sciadv.adg7827. Epub 2023 Jul 12.

Abstract

Colloidal quantum dot (CQD)-based photodetectors are promising alternatives to bulk semiconductor-based detectors to be monolithically integrated with complementary metal-oxide semiconductor readout integrated circuits avoiding high-cost epitaxial growth methods and complicated flip-bonding processes. To date, photovoltaic (PV) single-pixel detectors have led to the best performance with background-limit infrared photodetection performance. However, the nonuniform and uncontrollable doping methods and complex device configuration restrict the focal plane array (FPA) imagers to operate in PV mode. Here, we propose a controllable in situ electric field-activated doping method to construct lateral p-n junctions in the short-wave infrared (SWIR) mercury telluride (HgTe) CQD-based photodetectors with a simple planar configuration. The planar p-n junction FPA imagers with 640 × 512 pixels (15-μm pixel pitch) are fabricated and exhibit substantially improved performance compared with photoconductor imagers before activation. High-resolution SWIR infrared imaging is demonstrated with great potential for various applications including semiconductor inspection, food safety, and chemical analysis.

摘要

基于胶体量子点 (CQD) 的光电探测器是替代体半导体探测器的有前途的选择,可以与互补金属氧化物半导体读出集成电路单片集成,避免使用昂贵的外延生长方法和复杂的倒装键合工艺。迄今为止,光伏 (PV) 单像素探测器在背景限红外光电探测性能方面取得了最佳性能。然而,不均匀和不可控的掺杂方法以及复杂的器件结构限制了焦平面阵列 (FPA) 成像仪以光伏模式运行。在这里,我们提出了一种可控制的原位电场激活掺杂方法,用于在具有简单平面结构的短波长红外 (SWIR) 汞碲化物 (HgTe) CQD 光电探测器中构建横向 p-n 结。制造了具有 640×512 像素(15-μm 像素间距)的平面 p-n 结 FPA 成像仪,与激活前的光电导成像仪相比,其性能有了显著提高。高分辨率 SWIR 红外成像具有很大的应用潜力,包括半导体检测、食品安全和化学分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba7d/10337901/67738ee12e73/sciadv.adg7827-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验