Suppr超能文献

利用外部汇总数据改善疾病亚型异质性模型。

Improve the model of disease subtype heterogeneity by leveraging external summary data.

机构信息

Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America.

National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America.

出版信息

PLoS Comput Biol. 2023 Jul 12;19(7):e1011236. doi: 10.1371/journal.pcbi.1011236. eCollection 2023 Jul.

Abstract

Researchers are often interested in understanding the disease subtype heterogeneity by testing whether a risk exposure has the same level of effect on different disease subtypes. The polytomous logistic regression (PLR) model provides a flexible tool for such an evaluation. Disease subtype heterogeneity can also be investigated with a case-only study that uses a case-case comparison procedure to directly assess the difference between risk effects on two disease subtypes. Motivated by a large consortium project on the genetic basis of non-Hodgkin lymphoma (NHL) subtypes, we develop PolyGIM, a procedure to fit the PLR model by integrating individual-level data with summary data extracted from multiple studies under different designs. The summary data consist of coefficient estimates from working logistic regression models established by external studies. Examples of the working model include the case-case comparison model and the case-control comparison model, which compares the control group with a subtype group or a broad disease group formed by merging several subtypes. PolyGIM efficiently evaluates risk effects and provides a powerful test for disease subtype heterogeneity in situations when only summary data, instead of individual-level data, is available from external studies due to various informatics and privacy constraints. We investigate the theoretic properties of PolyGIM and use simulation studies to demonstrate its advantages. Using data from eight genome-wide association studies within the NHL consortium, we apply it to study the effect of the polygenic risk score defined by a lymphoid malignancy on the risks of four NHL subtypes. These results show that PolyGIM can be a valuable tool for pooling data from multiple sources for a more coherent evaluation of disease subtype heterogeneity.

摘要

研究人员通常通过测试风险暴露对不同疾病亚型的影响是否具有相同的水平来关注疾病亚型异质性。多分类逻辑回归(PLR)模型为这种评估提供了一种灵活的工具。病例仅研究也可以用于研究疾病亚型异质性,该研究使用病例-病例比较程序直接评估两种疾病亚型之间的风险效应差异。受非霍奇金淋巴瘤(NHL)亚型遗传基础大型联盟项目的启发,我们开发了 PolyGIM,这是一种通过将个体水平数据与来自不同设计的多个研究中提取的汇总数据集成来拟合 PLR 模型的程序。汇总数据包括由外部研究建立的工作逻辑回归模型的系数估计。工作模型的示例包括病例-病例比较模型和病例对照比较模型,这些模型将对照组与由合并几个亚型形成的亚型组或广义疾病组进行比较。在由于各种信息学和隐私限制,外部研究只能提供汇总数据而不是个体水平数据的情况下,PolyGIM 可以有效地评估风险效应,并为疾病亚型异质性提供强大的检验。我们研究了 PolyGIM 的理论性质,并通过模拟研究证明了它的优势。我们使用 NHL 联盟内的八个全基因组关联研究的数据,应用它来研究由淋巴恶性肿瘤定义的多基因风险评分对四种 NHL 亚型风险的影响。这些结果表明,PolyGIM 可以成为从多个来源汇总数据以更一致地评估疾病亚型异质性的有价值的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3f7/10337985/187333800bdf/pcbi.1011236.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验