Department of General Internal Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States.
Harvard Medical School, Boston, Massachusetts, United States.
Appl Clin Inform. 2023 May;14(3):528-537. doi: 10.1055/s-0043-1768994. Epub 2023 Jul 12.
Chronic kidney disease (CKD) is common and associated with adverse clinical outcomes. Most care for early CKD is provided in primary care, including hypertension (HTN) management. Computerized clinical decision support (CDS) can improve the quality of care for CKD but can also cause alert fatigue for primary care physicians (PCPs). Computable phenotypes (CPs) are algorithms to identify disease populations using, for example, specific laboratory data criteria.
Our objective was to determine the feasibility of implementation of CDS alerts by developing CPs and estimating potential alert burden.
We utilized clinical guidelines to develop a set of five CPs for patients with stage 3 to 4 CKD, uncontrolled HTN, and indications for initiation or titration of guideline-recommended antihypertensive agents. We then conducted an iterative data analytic process consisting of database queries, data validation, and subject matter expert discussion, to make iterative changes to the CPs. We estimated the potential alert burden to make final decisions about the scope of the CDS alerts. Specifically, the number of times that each alert could fire was limited to once per patient.
In our primary care network, there were 239,339 encounters for 105,992 primary care patients between April 1, 2018 and April 1, 2019. Of these patients, 9,081 (8.6%) had stage 3 and 4 CKD. Almost half of the CKD patients, 4,191 patients, also had uncontrolled HTN. The majority of CKD patients were female, elderly, white, and English-speaking. We estimated that 5,369 alerts would fire if alerts were triggered multiple times per patient, with a mean number of alerts shown to each PCP ranging from 0.07-to 0.17 alerts per week.
Development of CPs and estimation of alert burden allows researchers to iteratively fine-tune CDS prior to implementation. This method of assessment can help organizations balance the tradeoff between standardization of care and alert fatigue.
慢性肾脏病(CKD)较为常见,与不良临床结局相关。大多数早期 CKD 的治疗都在初级保健中进行,包括高血压(HTN)的管理。计算机临床决策支持(CDS)可以提高 CKD 的治疗质量,但也会导致初级保健医生(PCP)的警报疲劳。可计算表型(CP)是使用特定实验室数据标准等来识别疾病人群的算法。
我们旨在通过开发 CP 并估计潜在的警报负担来确定实施 CDS 警报的可行性。
我们利用临床指南制定了一套适用于 3 至 4 期 CKD、未控制的 HTN 以及开始或调整指南推荐的抗高血压药物的指征的患者的 5 个 CP。然后,我们进行了一个迭代数据分析过程,包括数据库查询、数据验证和主题专家讨论,以对 CP 进行迭代修改。我们估计了潜在的警报负担,以便最终决定 CDS 警报的范围。具体来说,每个警报的触发次数限制为每位患者一次。
在我们的初级保健网络中,2018 年 4 月 1 日至 2019 年 4 月 1 日期间,有 105992 名初级保健患者的 239339 次就诊。这些患者中有 9081 人(8.6%)患有 3 至 4 期 CKD。几乎一半的 CKD 患者(4191 人)也有未控制的 HTN。大多数 CKD 患者为女性、老年人、白人且讲英语。如果每次患者触发多次警报,我们估计会触发 5369 次警报,每位 PCP 显示的平均警报数量为每周 0.07 至 0.17 次。
CP 的开发和警报负担的估计允许研究人员在实施前对 CDS 进行迭代调整。这种评估方法可以帮助组织在标准化护理和警报疲劳之间取得平衡。