The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, China.
Nucleic Acids Res. 2023 Sep 8;51(16):8606-8622. doi: 10.1093/nar/gkad596.
Recruitment of RAD51 and/or DMC1 recombinases to single-strand DNA is indispensable for homology search and strand invasion in homologous recombination (HR) and for protection of nascent DNA strands at stalled replication forks. Thereafter RAD51/DMC1 dissociate, actively or passively, from these joint molecules upon DNA repair or releasing from replication stress. However, the mechanism that regulates RAD51/DMC1 dissociation and its physiological importance remain elusive. Here, we show that a FLIP-FIGNL1 complex regulates RAD51 and DMC1 dissociation to promote meiotic recombination and replication fork restart in mammals. Mice lacking FLIP are embryonic lethal, while germline-specific deletion of FLIP leads to infertility in both males and females. FLIP-null meiocytes are arrested at a zygotene-like stage with massive RAD51 and DMC1 foci, which frequently co-localize with SHOC1 and TEX11. Furthermore, FLIP interacts with FIGNL1. Depletion of FLIP or FIGNL1 in cell lines destabilizes each other and impairs RAD51 dissociation. Thus, the active dissociation of RAD51/DMC1 by the FLIP-FIGNL1 complex is a crucial step required for HR and replication fork restart, and represents a conserved mechanism in somatic cells and germ cells.
招募 RAD51 和/或 DMC1 重组酶到单链 DNA 对于同源重组 (HR) 中的同源搜索和链入侵以及保护停滞复制叉处的新生 DNA 链是必不可少的。此后,RAD51/DMC1 在 DNA 修复或从复制压力释放时主动或被动地从这些连接分子上解离。然而,调节 RAD51/DMC1 解离的机制及其生理重要性仍然难以捉摸。在这里,我们表明 FLIP-FIGNL1 复合物调节 RAD51 和 DMC1 的解离,以促进哺乳动物的减数分裂重组和复制叉重新启动。缺乏 FLIP 的小鼠是胚胎致死的,而生殖细胞特异性缺失 FLIP 会导致雄性和雌性的不育。FLIP 缺失的减数分裂细胞停滞在类似于粗线期的阶段,大量 RAD51 和 DMC1 焦点,这些焦点经常与 SHOC1 和 TEX11 共定位。此外,FLIP 与 FIGNL1 相互作用。细胞系中 FLIP 或 FIGNL1 的耗竭会使彼此不稳定,并损害 RAD51 的解离。因此,FLIP-FIGNL1 复合物对 RAD51/DMC1 的主动解离是 HR 和复制叉重新启动所必需的关键步骤,是体细胞和生殖细胞中保守的机制。