Suppr超能文献

基于单个矢量传感器的水下波达方向深度迁移学习

Deep transfer learning for underwater direction of arrival using one vector sensor.

作者信息

Cao Huaigang, Wang Wenbo, Su Lin, Ni Haiyan, Gerstoft Peter, Ren Qunyan, Ma Li

机构信息

Key Laboratory of Underwater Acoustic Environment, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.

NoiseLab, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093-0238, USA.

出版信息

J Acoust Soc Am. 2021 Mar;149(3):1699. doi: 10.1121/10.0003645.

Abstract

A deep transfer learning (DTL) method is proposed for the direction of arrival (DOA) estimation using a single-vector sensor. The method involves training of a convolutional neural network (CNN) with synthetic data in source domain and then adapting the source domain to target domain with available at-sea data. The CNN is fed with the cross-spectrum of acoustical pressure and particle velocity during the training process to learn DOAs of a moving surface ship. For domain adaptation, first convolutional layers of the pre-trained CNN are copied to a target CNN, and the remaining layers of the target CNN are randomly initialized and trained on at-sea data. Numerical tests and real data results suggest that the DTL yields more reliable DOA estimates than a conventional CNN, especially with interfering sources.

摘要

提出了一种用于单矢量传感器波达方向(DOA)估计的深度迁移学习(DTL)方法。该方法包括在源域中使用合成数据训练卷积神经网络(CNN),然后利用可用的海上数据将源域适配到目标域。在训练过程中,将声压和质点速度的互谱输入到CNN中,以学习运动水面舰艇的波达方向。对于域适配,将预训练CNN的前几层卷积层复制到目标CNN中,目标CNN的其余层随机初始化并在海上数据上进行训练。数值测试和实际数据结果表明,与传统CNN相比,DTL能产生更可靠的波达方向估计,尤其是在存在干扰源的情况下。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验