Regensburg University Medical Center, Department of Trauma Surgery, Regensburg, Germany.
AO Research Institute Davos, Davos-Platz, Switzerland.
Clin Orthop Relat Res. 2023 Oct 1;481(10):2044-2060. doi: 10.1097/CORR.0000000000002753. Epub 2023 Jul 13.
Staphylococcus aureus is the leading pathogen in fracture-related infection. Previous in vitro experiments, in vivo testing in wax moth larvae, and genomic analysis of clinical S. aureu s isolates from fracture-related infection identified low-virulence (Lo-SA5464) and high-virulence (Hi-SA5458) strains. These findings correlated with acute fracture-related infection induced by Hi-SA5458, whereas Lo-SA5464 caused a chronic fracture-related infection in its human host. However, it remains unclear whether and to what extent the causative pathogen is attributable to these disparities in fracture-related infections.
QUESTION/PURPOSE: Are there differences in the course of infection when comparing these two different clinical isolates in a murine fracture-related infection model, as measured by (1) clinical observations of weight loss, (2) quantitative bacteriology, (3) immune response, and (4) radiographic and histopathologic morphology?
Twenty-five (including one replacement animal) female (no sex-specific influences expected), skeletally mature C57Bl/6N inbred mice between 20 and 28 weeks old underwent femoral osteotomy stabilized by titanium locking plates. Fracture-related infection was established by inoculation of high-virulence S. aureus EDCC 5458 (Hi-SA5458) or low-virulence S. aureus EDCC 5464 (Lo-SA5464) in the fracture gap. Each of these groups consisted of 12 randomly assigned animals. Mice were euthanized 4 and 14 days postsurgery, resulting in six animals per group and timepoint. The severity and progression of infection were assessed in terms of clinical observation of weight loss, quantitative bacteriology, quantitative serum cytokine levels, qualitative analysis of postmortem radiographs, and semiquantitative histopathologic evaluation.
For clinical observations of weight change, no differences were seen at Day 4 between Hi-SA5458- and Lo-SA5464-infected animals (mean -0.6 ± 0.1 grams versus -0.8 ± 0.2 grams, mean difference -0.2 grams [95% CI -0.8 to 0.5 grams]; p =0.43), while at 14 days, the Hi-SA5458 group lost more weight than the Lo-SA5464 group (mean -1.55 ± 0.2 grams versus -0.8 ± 0.3 grams; mean difference 0.7 grams [95% CI 0.2 to 1.3 grams]; p = 0.02). Quantitative bacteriological results 4 days postoperatively revealed a higher bacterial load in soft tissue samples in Hi-SA5458-infected animals than in the Lo-SA5464-infected cohort (median 6.8 x 10 7 colony-forming units [CFU]/g, range 2.2 x 10 7 to 2.1 x 10 9 CFU/g versus median 6.0 x 10 6 CFU/g, range 1.8 x 10 5 to 1.3 x 10 8 CFU/g; difference of medians 6.2 x 10 7 CFU/g; p = 0.03). At both timepoints, mice infected with the Hi-SA5458 strain also displayed higher proportions of bacterial dissemination into organs than Lo-SA5464-infected animals (67% [24 of 36 organs] versus 14% [five of 36 organs]; OR 12.0 [95% CI 3.7 to 36]; p < 0.001). This was accompanied by a pronounced proinflammatory response on Day 14, indicated by increased serum cytokine levels of interleukin-1β (mean 9.0 ± 2.2 pg/mL versus 5.3 ± 1.5 pg/mL; mean difference 3.6 pg/mL [95% CI 2.0 to 5.2 pg/mL]; p < 0.001), IL-6 (mean 458.6 ± 370.7 pg/mL versus 201.0 ±89.6 pg/mL; mean difference 257.6 pg/mL [95% CI 68.7 to 446.5 pg/mL]; p = 0.006), IL-10 (mean 15.9 ± 3.5 pg/mL versus 9.9 ± 1.0 pg/mL; mean difference 6.0 pg/mL [95% CI 3.2 to 8.7 pg/mL]; p < 0.001), and interferon-γ (mean 2.7 ± 1.9 pg/mL versus 0.8 ± 0.3 pg/mL; mean difference 1.8 pg/mL [95% CI 0.5 to 3.1 pg/mL]; p = 0.002) in Hi-SA5458-infected compared with Lo-SA5464-infected animals. The semiquantitative histopathologic assessment on Day 4 revealed higher grades of granulocyte infiltration in Hi-SA5458-infected animals (mean grade 2.5 ± 1.0) than in Lo-SA5464-infected animals (mean grade 1.8 ± 1.4; mean difference 0.7 [95% CI 0.001 to 1.4]; p = 0.0498). On Day 14, bone healing at the fracture site was present to a higher extent in Lo-SA5464-infected animals than in Hi-SA5458-infected animals (mean grade 0.2 ± 0.4 versus 1.8 ± 1.2; mean difference -1.6 [95% CI -2.8 to -0.5]; p = 0.008).
Similar to septic infection in a human host, infection with Hi-SA5458 in this murine model was characterized by a higher bacterial load, more-pronounced systemic dissemination, and stronger systemic and local inflammation. Thus, there is strong support for the idea that pathogenic virulence plays a crucial role in fracture-related infections. To confirm our observations, future studies should focus on characterizing S. aureus virulence at the genomic and transcriptomic levels in more clinical isolates and patients. Comparing knockout and wildtype strains in vitro and in vivo, including the S. aureus strains studied, could confirm our findings and identify the genomic features responsible for S. aureus virulence in fracture-related infections.
For translational use, virulence profiles of S. aureus may be useful in guiding treatment decisions in the future. Once specific virulence targets are identified, one approach to fracture-related infections with high-virulence strains might be the development of antivirulence agents, particularly to treat or prevent septic dissemination. For fracture-related infections with low virulence, prolonged antimicrobial therapy or exchange of an indwelling implant might be beneficial owing to slower growth and persistence capacity.
金黄色葡萄球菌是与骨折相关感染的主要病原体。以前的体外实验、黄粉虫幼虫体内试验以及骨折相关感染的临床金黄色葡萄球菌分离株的基因组分析确定了低毒力(Lo-SA5464)和高毒力(Hi-SA5458)株。这些发现与 Hi-SA5458 引起的急性骨折相关感染相关,而 Lo-SA5464 在其人类宿主中引起慢性骨折相关感染。然而,目前尚不清楚这种病原体是否以及在何种程度上导致了骨折相关感染的这些差异。
问题/目的:在一项使用小鼠骨折相关感染模型的研究中,与两种不同的临床分离株相比,(1)体重减轻的临床观察,(2)定量细菌学,(3)免疫反应,以及(4)放射学和组织病理学形态是否存在差异?
25 只(包括一只替代动物)骨骼成熟的 C57Bl/6N 近交系雌性小鼠,年龄在 20 至 28 周之间,接受股骨截骨术并通过钛锁定板固定。通过在骨折间隙接种高毒力金黄色葡萄球菌 EDCC 5458(Hi-SA5458)或低毒力金黄色葡萄球菌 EDCC 5464(Lo-SA5464)来建立骨折相关感染。每组包括 12 只随机分配的动物。术后 4 天和 14 天对小鼠进行安乐死,每组和时间点各有 6 只动物。通过体重减轻的临床观察、定量细菌学、定量血清细胞因子水平、死后放射学的定性分析以及半定量组织病理学评估来评估感染的严重程度和进展。
在第 4 天,Hi-SA5458 和 Lo-SA5464 感染的动物之间的体重变化没有差异(平均-0.6±0.1 克与-0.8±0.2 克;平均差异-0.2 克[95%置信区间-0.8 至 0.5 克];p=0.43),而在第 14 天,Hi-SA5458 组比 Lo-SA5464 组体重减轻更多(平均-1.55±0.2 克与-0.8±0.3 克;平均差异 0.7 克[95%置信区间 0.2 至 1.3 克];p=0.02)。术后 4 天的定量细菌学结果显示,Hi-SA5458 感染动物的软组织样本中细菌负荷更高(中位数 6.8×107 菌落形成单位[CFU]/克,范围 2.2×107 至 2.1×109 CFU/克与中位数 6.0×106 CFU/克,范围 1.8×105 至 1.3×108 CFU/克;中位数差异 6.2×107 CFU/克;p=0.03)。在两个时间点,与 Lo-SA5464 感染的动物相比,Hi-SA5458 株感染的动物也显示出更高比例的细菌播散到器官中(67%[36 个器官中的 24 个]与 14%[36 个器官中的 5 个];比值比 12.0[95%置信区间 3.7 至 36];p<0.001)。这伴随着第 14 天促炎细胞因子水平的显著升高,表现为白细胞介素-1β(平均 9.0±2.2 pg/mL 与 5.3±1.5 pg/mL;平均差异 3.6 pg/mL[95%置信区间 2.0 至 5.2 pg/mL];p<0.001)、IL-6(平均 458.6±370.7 pg/mL 与 201.0±89.6 pg/mL;平均差异 257.6 pg/mL[95%置信区间 68.7 至 446.5 pg/mL];p=0.006)、IL-10(平均 15.9±3.5 pg/mL 与 9.9±1.0 pg/mL;平均差异 6.0 pg/mL[95%置信区间 3.2 至 8.7 pg/mL];p<0.001)和干扰素-γ(平均 2.7±1.9 pg/mL 与 0.8±0.3 pg/mL;平均差异 1.8 pg/mL[95%置信区间 0.5 至 3.1 pg/mL];p=0.002)在 Hi-SA5458 感染的动物中高于 Lo-SA5464 感染的动物。第 4 天的半定量组织病理学评估显示,Hi-SA5458 感染的动物中粒细胞浸润程度更高(平均 2.5±1.0),而 Lo-SA5464 感染的动物(平均 1.8±1.4;平均差异 0.7[95%置信区间 0.001 至 1.4];p=0.0498)。第 14 天,Lo-SA5464 感染的动物在骨折部位的骨愈合程度更高(平均 0.2±0.4 与 1.8±1.2;平均差异-1.6[95%置信区间-2.8 至-0.5];p=0.008)。
类似于人类宿主中的败血症感染,本研究中小鼠模型中 Hi-SA5458 感染的特征是更高的细菌负荷、更明显的全身播散以及更强的全身和局部炎症。因此,有力地支持了致病性毒力在骨折相关感染中发挥关键作用的观点。为了证实我们的观察结果,未来的研究应集中于在更多的临床分离株和患者中对金黄色葡萄球菌的毒力进行基因组和转录组学特征分析。通过比较金黄色葡萄球菌菌株研究中的 S. aureus 菌株及其突变体和野生型菌株,可能证实我们的发现并确定与 S. aureus 骨折相关感染毒力相关的基因组特征。
为了转化应用,金黄色葡萄球菌的毒力特征可能有助于指导未来的治疗决策。一旦确定了特定的毒力靶点,针对高毒力菌株的治疗方法之一可能是开发抗病毒药物,特别是用于治疗或预防败血症的播散。对于低毒力的骨折相关感染,延长抗菌治疗或更换留置植入物可能是有益的,因为其生长和持续存在的能力较慢。