Suppr超能文献

一氧化氮在硝化细菌羟胺氧化中的作用。

Role of Nitric Oxide in Hydroxylamine Oxidation by Ammonia-Oxidizing Bacteria.

机构信息

Fort Lauderdale Research and Education Center, Microbiology & Cell Science Department, University of Florida, Davie, Florida, USA.

出版信息

Appl Environ Microbiol. 2023 Aug 30;89(8):e0217322. doi: 10.1128/aem.02173-22. Epub 2023 Jul 13.

Abstract

An important role of nitric oxide (NO) as either a free intermediate in the NH oxidation pathway or a potential oxidant for NH or NHOH has been proposed for ammonia-oxidizing bacteria (AOB) and archaea (AOA), respectively. However, tracing NO metabolism at low concentrations remains notoriously difficult. Here, we use electrochemical sensors and the mild NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO) to trace apparent NO concentration and determine production rates at low micromolar concentrations in the model AOB strain Nitrosomonas europaea. In agreement with previous studies, we found that PTIO does not affect NH oxidation instantaneously in both Nitrosospira briensis and Nitrosomonas europaea, unlike inhibitors for ammonia oxidation such as allylthiourea and acetylene, although it effectively scavenged NO from the cell suspensions. Quantitative analysis showed that NO production by amounted to 3.15% to 6.23% of NO production, whereas grown under O limitation produced NO equivalent to up to 40% of NO production at high substrate concentrations. In addition, we found that PTIO addition to grown under O limitation abolished NO production. These results indicate different turnover rates of NO during NH oxidation under O-replete and O-limited growth conditions in AOB. The results suggest that NO may not be a free intermediate or remain tightly bound to iron centers of enzymes during hydroxylamine oxidation and that only NH saturation and adaptation to O limitation may lead to significant dissociation of NO from hydroxylamine dehydrogenase. Ammonia oxidation by chemolithoautotrophic ammonia-oxidizing bacteria (AOB) is thought to contribute significantly to global nitrous oxide (NO) emissions and leaching of oxidized nitrogen, particularly through their activity in nitrogen (N)-fertilized agricultural production systems. Although substantial efforts have been made to characterize the N metabolism in AOB, recent findings suggest that nitric oxide (NO) may play an important mechanistic role as a free intermediate of hydroxylamine oxidation in AOB, further implying that besides hydroxylamine dehydrogenase (HAO), additional enzymes may be required to complete the ammonia oxidation pathway. However, the NO spin trap PTIO was found to not inhibit ammonia oxidation in AOB. This study provides a combination of physiological and spectroscopic evidence that PTIO indeed scavenges only free NO in AOB and that significant amounts of free NO are produced only during incomplete hydroxylamine oxidation or nitrifier denitrification under O-limited growth conditions.

摘要

一氧化氮(NO)作为氨氧化途径中的游离中间体,或者作为氨或羟氨的潜在氧化剂,分别在氨氧化细菌(AOB)和古菌(AOA)中发挥着重要作用。然而,在低浓度下追踪 NO 代谢仍然极具挑战性。在这里,我们使用电化学传感器和温和的 NO 清除剂 2-苯基-4,4,5,5-四甲基咪唑啉-1-氧自由基 3-氧化物(PTIO),在模型 AOB 菌株欧洲亚硝化单胞菌中追踪低微摩尔浓度下的表观 NO 浓度,并确定其产生速率。与先前的研究一致,我们发现 PTIO 不会像氨氧化抑制剂如烯丙基硫脲和乙炔那样,立即影响 Nitrosospira briensis 和 Nitrosomonas europaea 中的氨氧化,尽管它可以有效地从细胞悬浮液中清除 NO。定量分析表明,在高底物浓度下, 产生的 NO 量相当于 3.15%至 6.23%的 NO 产生量,而在 O 限制下生长的 则产生相当于高达 40%的 NO 产生量的 NO。此外,我们发现向 O 限制下生长的 添加 PTIO 会完全消除 NO 的产生。这些结果表明,在 AOB 中,O 充足和 O 限制生长条件下,NH 氧化过程中 NO 的周转率不同。结果表明,在羟胺氧化过程中,NO 可能不是游离中间体,或者仍然与酶的铁中心紧密结合,只有 NH 饱和和适应 O 限制才可能导致 NO 从羟胺脱氢酶中显著解离。

化能自养氨氧化细菌(AOB)的氨氧化作用被认为是全球氧化亚氮(NO)排放和氧化态氮淋失的重要因素,特别是在氮(N)施肥农业生产系统中。尽管已经做出了大量努力来描述 AOB 中的 N 代谢,但最近的发现表明,一氧化氮(NO)可能作为 AOB 中羟胺氧化的游离中间体发挥重要的机制作用,这进一步表明,除了羟胺脱氢酶(HAO)外,还可能需要其他酶来完成氨氧化途径。然而,发现 NO 自旋陷阱 PTIO 不会抑制 AOB 中的氨氧化。本研究提供了生理和光谱证据的结合,证明 PTIO 确实只在 AOB 中清除游离的 NO,并且只有在 O 限制生长条件下不完全羟胺氧化或硝化菌反硝化时才会产生大量的游离 NO。

相似文献

1
Role of Nitric Oxide in Hydroxylamine Oxidation by Ammonia-Oxidizing Bacteria.一氧化氮在硝化细菌羟胺氧化中的作用。
Appl Environ Microbiol. 2023 Aug 30;89(8):e0217322. doi: 10.1128/aem.02173-22. Epub 2023 Jul 13.
5
Heme P460: A (Cross) Link to Nitric Oxide.血红素 P460:一氧化氮的(交联)链接。
Acc Chem Res. 2020 Dec 15;53(12):2925-2935. doi: 10.1021/acs.accounts.0c00573. Epub 2020 Nov 12.

本文引用的文献

2
The microbial nitrogen-cycling network.微生物氮循环网络。
Nat Rev Microbiol. 2018 May;16(5):263-276. doi: 10.1038/nrmicro.2018.9. Epub 2018 Feb 5.
9
Complete nitrification by Nitrospira bacteria.硝化螺菌属细菌实现完全硝化作用。
Nature. 2015 Dec 24;528(7583):504-9. doi: 10.1038/nature16461. Epub 2015 Nov 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验