Department of Physics, Harvard University, Cambridge, Massachusetts, United States of America.
Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Paris, France.
PLoS One. 2023 Jul 13;18(7):e0288611. doi: 10.1371/journal.pone.0288611. eCollection 2023.
In E. coli, double strand breaks (DSBs) are resected and loaded with RecA protein. The genome is then rapidly searched for a sequence that is homologous to the DNA flanking the DSB. Mismatches in homologous partners are rare, suggesting that RecA should rapidly reject mismatched recombination products; however, this is not the case. Decades of work have shown that long lasting recombination products can include many mismatches. In this work, we show that in vitro RecA forms readily observable recombination products when 16% of the bases in the product are mismatched. We also consider various theoretical models of mismatch-tolerant homology testing. The models test homology by comparing the sequences of Ltest bases in two single-stranded DNAs (ssDNA) from the same genome. If the two sequences pass the homology test, the pairing between the two ssDNA becomes permanent. Stringency is the fraction of permanent pairings that join ssDNA from the same positions in the genome. We applied the models to both randomly generated genomes and bacterial genomes. For both randomly generated genomes and bacterial genomes, the models show that if no mismatches are accepted stringency is ∼ 99% when Ltest = 14 bp. For randomly generated genomes, stringency decreases with increasing mismatch tolerance, and stringency improves with increasing Ltest. In contrast, in bacterial genomes when Ltest ∼ 75 bp, stringency is ∼ 99% for both mismatch-intolerant and mismatch-tolerant homology testing. Furthermore, increasing Ltest does not improve stringency because most incorrect pairings join different copies of repeats. In sum, for bacterial genomes highly mismatch tolerant homology testing of 75 bp provides the same stringency as homology testing that rejects all mismatches and testing more than ∼75 base pairs is not useful. Interestingly, in vivo commitment to recombination typically requires homology testing of ∼ 75 bp, consistent with highly mismatch intolerant testing.
在大肠杆菌中,双链断裂(DSB)被切除并与 RecA 蛋白结合。然后,基因组会迅速搜索与 DSB 侧翼 DNA 同源的序列。同源物中的错配很少,这表明 RecA 应该迅速拒绝不匹配的重组产物;然而,事实并非如此。几十年的研究表明,持久的重组产物可以包含许多错配。在这项工作中,我们表明,在体外,当产物中 16%的碱基不匹配时,RecA 很容易形成可观察到的重组产物。我们还考虑了各种容忍错配的同源性测试的理论模型。这些模型通过比较来自同一基因组的两条单链 DNA(ssDNA)中 Ltest 碱基的序列来测试同源性。如果两条序列通过同源性测试,那么两条 ssDNA 之间的配对就会永久化。严格性是在基因组中相同位置来自两条 ssDNA 的永久配对的分数。我们将模型应用于随机生成的基因组和细菌基因组。对于随机生成的基因组和细菌基因组,模型表明,如果不接受任何错配,当 Ltest = 14 bp 时,严格性约为 99%。对于随机生成的基因组,严格性随着错配容忍度的增加而降低,随着 Ltest 的增加而提高。相比之下,在细菌基因组中,当 Ltest≈75 bp 时,不宽容错配和宽容错配的同源性测试的严格性约为 99%。此外,增加 Ltest 并不能提高严格性,因为大多数错误的配对会连接到重复序列的不同副本。总之,对于细菌基因组,高度容忍错配的 75 bp 同源性测试提供了与拒绝所有错配的同源性测试相同的严格性,并且测试超过约 75 个碱基对没有用处。有趣的是,体内对重组的承诺通常需要约 75 bp 的同源性测试,这与高度不容忍错配的测试一致。