文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

SCENIC+:单细胞多组学推断增强子和基因调控网络。

SCENIC+: single-cell multiomic inference of enhancers and gene regulatory networks.

机构信息

VIB Center for Brain & Disease Research, Leuven, Belgium.

Department of Human Genetics, KU Leuven, Leuven, Belgium.

出版信息

Nat Methods. 2023 Sep;20(9):1355-1367. doi: 10.1038/s41592-023-01938-4. Epub 2023 Jul 13.


DOI:10.1038/s41592-023-01938-4
PMID:37443338
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10482700/
Abstract

Joint profiling of chromatin accessibility and gene expression in individual cells provides an opportunity to decipher enhancer-driven gene regulatory networks (GRNs). Here we present a method for the inference of enhancer-driven GRNs, called SCENIC+. SCENIC+ predicts genomic enhancers along with candidate upstream transcription factors (TFs) and links these enhancers to candidate target genes. To improve both recall and precision of TF identification, we curated and clustered a motif collection with more than 30,000 motifs. We benchmarked SCENIC+ on diverse datasets from different species, including human peripheral blood mononuclear cells, ENCODE cell lines, melanoma cell states and Drosophila retinal development. Next, we exploit SCENIC+ predictions to study conserved TFs, enhancers and GRNs between human and mouse cell types in the cerebral cortex. Finally, we use SCENIC+ to study the dynamics of gene regulation along differentiation trajectories and the effect of TF perturbations on cell state. SCENIC+ is available at scenicplus.readthedocs.io .

摘要

在单个细胞中对染色质可及性和基因表达进行联合分析,为破译增强子驱动的基因调控网络(GRN)提供了机会。在这里,我们提出了一种称为 SCENIC+的增强子驱动的 GRN 推断方法。SCENIC+ 预测基因组增强子以及候选上游转录因子(TF),并将这些增强子与候选靶基因联系起来。为了提高 TF 识别的召回率和精度,我们整理并聚类了一个包含超过 30000 个基序的 motif 集合。我们在来自不同物种的不同数据集上对 SCENIC+进行了基准测试,包括人外周血单核细胞、ENCODE 细胞系、黑色素瘤细胞状态和果蝇视网膜发育。接下来,我们利用 SCENIC+的预测来研究大脑皮层中人类和小鼠细胞类型之间保守的 TF、增强子和 GRN。最后,我们使用 SCENIC+研究沿着分化轨迹的基因调控动态以及 TF 扰动对细胞状态的影响。SCENIC+可在 scenicplus.readthedocs.io 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e285/10482700/6d0381702cff/41592_2023_1938_Fig16_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e285/10482700/3c8c96106765/41592_2023_1938_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e285/10482700/ddfbd2a18583/41592_2023_1938_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e285/10482700/9164563e7550/41592_2023_1938_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e285/10482700/c4fc893dbb73/41592_2023_1938_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e285/10482700/90085ea19dc3/41592_2023_1938_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e285/10482700/dbb06b37e591/41592_2023_1938_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e285/10482700/faae876633c6/41592_2023_1938_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e285/10482700/412de8cb1957/41592_2023_1938_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e285/10482700/55458354af09/41592_2023_1938_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e285/10482700/d4aa891dea12/41592_2023_1938_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e285/10482700/12e9ee54848f/41592_2023_1938_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e285/10482700/15c12d962469/41592_2023_1938_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e285/10482700/9905c26b4d94/41592_2023_1938_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e285/10482700/92216df5cd33/41592_2023_1938_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e285/10482700/4a3da7baad3a/41592_2023_1938_Fig15_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e285/10482700/6d0381702cff/41592_2023_1938_Fig16_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e285/10482700/3c8c96106765/41592_2023_1938_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e285/10482700/ddfbd2a18583/41592_2023_1938_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e285/10482700/9164563e7550/41592_2023_1938_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e285/10482700/c4fc893dbb73/41592_2023_1938_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e285/10482700/90085ea19dc3/41592_2023_1938_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e285/10482700/dbb06b37e591/41592_2023_1938_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e285/10482700/faae876633c6/41592_2023_1938_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e285/10482700/412de8cb1957/41592_2023_1938_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e285/10482700/55458354af09/41592_2023_1938_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e285/10482700/d4aa891dea12/41592_2023_1938_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e285/10482700/12e9ee54848f/41592_2023_1938_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e285/10482700/15c12d962469/41592_2023_1938_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e285/10482700/9905c26b4d94/41592_2023_1938_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e285/10482700/92216df5cd33/41592_2023_1938_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e285/10482700/4a3da7baad3a/41592_2023_1938_Fig15_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e285/10482700/6d0381702cff/41592_2023_1938_Fig16_ESM.jpg

相似文献

[1]
SCENIC+: single-cell multiomic inference of enhancers and gene regulatory networks.

Nat Methods. 2023-9

[2]
Identification of genomic enhancers through spatial integration of single-cell transcriptomics and epigenomics.

Mol Syst Biol. 2020-5

[3]
GRaNIE and GRaNPA: inference and evaluation of enhancer-mediated gene regulatory networks.

Mol Syst Biol. 2023-6-12

[4]
Mapping gene regulatory networks in Drosophila eye development by large-scale transcriptome perturbations and motif inference.

Cell Rep. 2014-12-24

[5]
Complexity of enhancer networks predicts cell identity and disease genes revealed by single-cell multi-omics analysis.

Brief Bioinform. 2023-1-19

[6]
MINI-AC: inference of plant gene regulatory networks using bulk or single-cell accessible chromatin profiles.

Plant J. 2024-1

[7]
Contribution of transposable elements and distal enhancers to evolution of human-specific features of interphase chromatin architecture in embryonic stem cells.

Chromosome Res. 2018-3

[8]
Identification and in silico modeling of enhancers reveals new features of the cardiac differentiation network.

Development. 2016-12-1

[9]
Robust target gene discovery through transcriptome perturbations and genome-wide enhancer predictions in Drosophila uncovers a regulatory basis for sensory specification.

PLoS Biol. 2010-7-27

[10]
Decoding gene regulation in the fly brain.

Nature. 2022-1

引用本文的文献

[1]
Myeloid progenitor dysregulation fuels immunosuppressive macrophages in tumours.

Nature. 2025-9-10

[2]
Dissecting cross-lineage tumourigenesis under p53 inactivation through single-cell multi-omics and spatial transcriptomics.

Clin Transl Med. 2025-9

[3]
The evolution of hominin bipedalism in two steps.

Nature. 2025-8-27

[4]
Cellular cartography reveals mouse prostate organization and determinants of castration resistance.

Proc Natl Acad Sci U S A. 2025-9-2

[5]
A spatial single-cell atlas of the claustro-insular region uncovers key regulators of neuronal identity and excitability.

Nat Commun. 2025-8-22

[6]
Boosting data interpretation with GIBOOST to enhance visualization of complex high-dimensional data.

Brief Bioinform. 2025-7-2

[7]
Multimodal learning decodes the global binding landscape of chromatin-associated proteins.

bioRxiv. 2025-8-17

[8]
Initiation of meiosis from human iPSCs under defined conditions through identification of regulatory factors.

Sci Adv. 2025-8-15

[9]
Global cis-regulatory landscape of double-stranded DNA viruses.

bioRxiv. 2025-7-20

[10]
spVelo: RNA velocity inference for multi-batch spatial transcriptomics data.

Genome Biol. 2025-8-11

本文引用的文献

[1]
Dissecting cell identity via network inference and in silico gene perturbation.

Nature. 2023-2

[2]
Nanobody-tethered transposition enables multifactorial chromatin profiling at single-cell resolution.

Nat Biotechnol. 2023-6

[3]
Multimodal chromatin profiling using nanobody-based single-cell CUT&Tag.

Nat Biotechnol. 2023-6

[4]
Current challenges in understanding the role of enhancers in disease.

Nat Struct Mol Biol. 2022-12

[5]
Re-engineering the adenine deaminase TadA-8e for efficient and specific CRISPR-based cytosine base editing.

Nat Biotechnol. 2023-5

[6]
Functional inference of gene regulation using single-cell multi-omics.

Cell Genom. 2022-9-14

[7]
Obtaining genetics insights from deep learning via explainable artificial intelligence.

Nat Rev Genet. 2023-2

[8]
The spatial organization of transcriptional control.

Nat Rev Genet. 2023-1

[9]
Meis1 plays roles in cortical development through regulation of cellular proliferative capacity in the embryonic cerebrum.

Biomed Res. 2022

[10]
NanoDam identifies Homeobrain (ARX) and Scarecrow (NKX2.1) as conserved temporal factors in the Drosophila central brain and visual system.

Dev Cell. 2022-5-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索