Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium.
Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium.
Plant J. 2024 Jan;117(1):280-301. doi: 10.1111/tpj.16483. Epub 2023 Oct 3.
Gene regulatory networks (GRNs) represent the interactions between transcription factors (TF) and their target genes. Plant GRNs control transcriptional programs involved in growth, development, and stress responses, ultimately affecting diverse agricultural traits. While recent developments in accessible chromatin (AC) profiling technologies make it possible to identify context-specific regulatory DNA, learning the underlying GRNs remains a major challenge. We developed MINI-AC (Motif-Informed Network Inference based on Accessible Chromatin), a method that combines AC data from bulk or single-cell experiments with TF binding site (TFBS) information to learn GRNs in plants. We benchmarked MINI-AC using bulk AC datasets from different Arabidopsis thaliana tissues and showed that it outperforms other methods to identify correct TFBS. In maize, a crop with a complex genome and abundant distal AC regions, MINI-AC successfully inferred leaf GRNs with experimentally confirmed, both proximal and distal, TF-target gene interactions. Furthermore, we showed that both AC regions and footprints are valid alternatives to infer AC-based GRNs with MINI-AC. Finally, we combined MINI-AC predictions from bulk and single-cell AC datasets to identify general and cell-type specific maize leaf regulators. Focusing on C4 metabolism, we identified diverse regulatory interactions in specialized cell types for this photosynthetic pathway. MINI-AC represents a powerful tool for inferring accurate AC-derived GRNs in plants and identifying known and novel candidate regulators, improving our understanding of gene regulation in plants.
基因调控网络 (GRNs) 代表转录因子 (TF) 与其靶基因之间的相互作用。植物 GRNs 控制与生长、发育和应激反应相关的转录程序,最终影响多种农业性状。虽然可及染色质 (AC) 分析技术的最新进展使得鉴定特定于上下文的调控 DNA 成为可能,但学习潜在的 GRNs 仍然是一个主要挑战。我们开发了 MINI-AC(基于可及染色质的 motif 信息的网络推断),这是一种将来自批量或单细胞实验的 AC 数据与 TF 结合位点 (TFBS) 信息相结合的方法,用于学习植物中的 GRNs。我们使用来自不同拟南芥组织的批量 AC 数据集对 MINI-AC 进行了基准测试,并表明它优于其他方法来识别正确的 TFBS。在玉米中,一种具有复杂基因组和丰富的远端 AC 区域的作物中,MINI-AC 成功推断了具有实验验证的近端和远端 TF-靶基因相互作用的叶片 GRNs。此外,我们表明,AC 区域和足迹都是使用 MINI-AC 推断基于 AC 的 GRNs 的有效替代方法。最后,我们结合批量和单细胞 AC 数据集的 MINI-AC 预测结果,鉴定了玉米叶片的一般和细胞类型特异性调节剂。我们专注于 C4 代谢,鉴定了这种光合作用途径中特化细胞类型的不同调节相互作用。MINI-AC 是一种强大的工具,可用于推断植物中准确的基于 AC 的 GRNs,并鉴定已知和新的候选调节剂,从而提高我们对植物基因调控的理解。