Mutti Carlotta, Pollara Irene, Abramo Anna, Soglia Margherita, Rapina Clara, Mastrillo Carmela, Alessandrini Francesca, Rosenzweig Ivana, Rausa Francesco, Pizzarotti Silvia, Salvatelli Marcello Luigi, Balella Giulia, Parrino Liborio
Sleep Disorders Center, Department of Medicine and Surgery, University Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy.
Sleep Disorders Centre, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK.
Diagnostics (Basel). 2023 Jun 29;13(13):2217. doi: 10.3390/diagnostics13132217.
Obstructive sleep apnea (OSA) is multi-faceted world-wide-distributed disorder exerting deep effects on the sleeping brain. In the latest years, strong efforts have been dedicated to finding novel measures assessing the real impact and severity of the pathology, traditionally trivialized by the simplistic apnea/hypopnea index. Due to the unavoidable connection between OSA and sleep, we reviewed the key aspects linking the breathing disorder with sleep pathophysiology, focusing on the role of cyclic alternating pattern (CAP). Sleep structure, reflecting the degree of apnea-induced sleep instability, may provide topical information to stratify OSA severity and foresee some of its dangerous consequences such as excessive daytime sleepiness and cognitive deterioration. Machine learning approaches may reinforce our understanding of this complex multi-level pathology, supporting patients' phenotypization and easing in a more tailored approach for sleep apnea.
阻塞性睡眠呼吸暂停(OSA)是一种多方面的、全球分布的疾病,对睡眠中的大脑有深远影响。近年来,人们付出了巨大努力来寻找新的方法来评估这种疾病的实际影响和严重程度,传统上这种疾病被简单的呼吸暂停/低通气指数所轻视。由于OSA与睡眠之间不可避免的联系,我们回顾了将呼吸障碍与睡眠病理生理学联系起来的关键方面,重点关注周期性交替模式(CAP)的作用。睡眠结构反映了呼吸暂停引起的睡眠不稳定程度,可能为分层OSA严重程度和预测其一些危险后果(如白天过度嗜睡和认知衰退)提供局部信息。机器学习方法可能会加强我们对这种复杂的多层次疾病的理解,支持患者的表型分析,并以更具针对性的方法缓解睡眠呼吸暂停。