Bechny Michal, Kishi Akifumi, Fiorillo Luigi, van der Meer Julia, Schmidt Markus, Bassetti Claudio, Tzovara Athina, Faraci Francesca
Institute of Computer Science, University of Bern, Bern, 3012, Switzerland.
Institute of Digital Technologies for Personalized Healthcare (MeDiTech), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Lugano-Viganello, 6962, Switzerland.
Sci Rep. 2025 Apr 8;15(1):12016. doi: 10.1038/s41598-025-97172-3.
Despite evidence that sleep-disorders alter sleep-stage dynamics, only a limited amount of these parameters are included and interpreted in clinical practice, mainly due to unintuitive methodologies or lacking normative values. Leveraging the matrix of sleep-stage transition proportions, we propose (i) a general framework to quantify sleep-dynamics, (ii) several novel markers of their alterations, and (iii) demonstrate our approach using obstructive sleep apnea (OSA), one of the most prevalent sleep-disorder and a significant risk factor. Using causal inference techniques, we address confounding in an observational clinical database and estimate markers personalized by age, gender, and OSA-severity. Importantly, our approach adjusts for five categories of sleep-wake-related comorbidities, a factor overlooked in existing research but present in 48.6% of OSA-subjects in our high-quality dataset. Key markers, such as NREM-REM-oscillations and sleep-stage-specific fragmentations, were increased across all OSA-severities and demographic groups. Additionally, we identified distinct gender-phenotypes, suggesting that females may be more vulnerable to awakenings and REM-sleep-disruptions. External validation of the transition markers on the SHHS database confirmed their robustness in detecting sleep-disordered-breathing (average AUROC = 66.4%). With advancements in automated sleep-scoring and wearable devices, our approach holds promise for developing low-cost screening tools for sleep-, neurodegenerative-, and psychiatric-disorders exhibiting altered sleep patterns.
尽管有证据表明睡眠障碍会改变睡眠阶段动态,但在临床实践中,仅有有限的这些参数被纳入并进行解读,这主要是由于方法不直观或缺乏规范值。利用睡眠阶段转换比例矩阵,我们提出:(i)一个量化睡眠动态的通用框架;(ii)其改变的几个新标记;(iii)使用阻塞性睡眠呼吸暂停(OSA)展示我们的方法,OSA是最常见的睡眠障碍之一,也是一个重要的风险因素。使用因果推断技术,我们在一个观察性临床数据库中解决混杂问题,并估计按年龄、性别和OSA严重程度个性化的标记。重要的是,我们的方法针对五类与睡眠 - 觉醒相关的合并症进行了调整,这是现有研究中被忽视的一个因素,但在我们高质量数据集中48.6%的OSA受试者中存在。关键标记,如NREM - REM振荡和特定睡眠阶段的碎片化,在所有OSA严重程度和人口统计学组中均增加。此外,我们确定了不同的性别表型,表明女性可能更容易受到觉醒和快速眼动睡眠中断的影响。在SHHS数据库上对转换标记进行外部验证,证实了它们在检测睡眠呼吸障碍方面的稳健性(平均曲线下面积 = 66.4%)。随着自动睡眠评分和可穿戴设备的进步,我们的方法有望开发出低成本的筛查工具,用于筛查睡眠模式改变的睡眠、神经退行性和精神疾病。