Kühnemund Alexander, Götz Sven, Recke Guido
Hochschule Osnabrück, Fachbereich Landwirtschaftliche Betriebswirtschaftslehre, Oldenburger Landstraße 24, 49090 Osnabrück, Germany.
VetVise GmbH, Bünteweg 2, 30559 Hannover, Germany.
Animals (Basel). 2023 Jul 5;13(13):2205. doi: 10.3390/ani13132205.
The resting behavior of rearing pigs provides information about their perception of the current temperature. A pen that is too cold or too warm can impact the well-being of the animals as well as their physical development. Previous studies that have automatically recorded animal behavior often utilized body posture. However, this method is error-prone because hidden animals (so-called false positives) strongly influence the results. In the present study, a method was developed for the automated identification of time periods in which all pigs are lying down using video recordings (an AI-supported camera system). We used velocity data (measured by the camera) of pigs in the pen to identify these periods. To determine the threshold value for images with the highest probability of containing only recumbent pigs, a dataset with 9634 images and velocity values was used. The resulting velocity threshold (0.0006020622 m/s) yielded an accuracy of 94.1%. Analysis of the testing dataset revealed that recumbent pigs were correctly identified based on velocity values derived from video recordings. This represents an advance toward automated detection from the previous manual detection method.
育肥猪的休息行为能提供有关它们对当前温度感知的信息。温度过冷或过热的猪舍会影响动物的健康及其身体发育。以往自动记录动物行为的研究通常利用身体姿势。然而,这种方法容易出错,因为隐藏的动物(即所谓的误报)会严重影响结果。在本研究中,开发了一种使用视频记录(人工智能支持的摄像系统)自动识别所有猪都躺卧时间段的方法。我们利用猪舍内猪的速度数据(由摄像头测量)来识别这些时间段。为了确定最有可能仅包含躺卧猪的图像的阈值,使用了一个包含9634张图像和速度值的数据集。由此得出的速度阈值(0.0006020622米/秒)的准确率为94.1%。对测试数据集的分析表明,根据视频记录得出的速度值能够正确识别躺卧的猪。这代表了从之前的人工检测方法向自动检测迈出的一步。